首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1343篇
  免费   8篇
  国内免费   38篇
  1389篇
  2023年   8篇
  2022年   16篇
  2021年   9篇
  2020年   16篇
  2019年   11篇
  2018年   21篇
  2017年   12篇
  2016年   6篇
  2015年   26篇
  2014年   106篇
  2013年   105篇
  2012年   119篇
  2011年   154篇
  2010年   143篇
  2009年   47篇
  2008年   56篇
  2007年   63篇
  2006年   46篇
  2005年   43篇
  2004年   52篇
  2003年   30篇
  2002年   23篇
  2001年   15篇
  2000年   19篇
  1999年   16篇
  1998年   21篇
  1997年   10篇
  1996年   15篇
  1995年   14篇
  1994年   16篇
  1993年   14篇
  1992年   13篇
  1991年   18篇
  1990年   12篇
  1989年   13篇
  1988年   5篇
  1987年   7篇
  1986年   6篇
  1985年   7篇
  1984年   10篇
  1983年   12篇
  1982年   4篇
  1981年   8篇
  1980年   9篇
  1979年   9篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1389条查询结果,搜索用时 15 毫秒
11.
Proteolysis by sequence-specific proteases is the key step for positive sequencing in proteomic studies integrated with mass spectrometry (MS). The conventional method of in-solution digestion of protein is a time-consuming procedure and has limited sensitivity. In this study, we report a simple and rapid system for the analysis of protein sequence and protein posttranslational modification by multienzymatic reaction in a continuous flow using the enzyme (trypsin, chymotrypsin, or alkaline phosphatase)-immobilized microreactor. The feasibility and performance of the single microreactor and tandem microreactors that were connected by the different microreactors were determined by the digestion of nonphosphoprotein (cytochrome c) and phosphoproteins (β-casein and pepsin A). The single microreactor showed rapid digestion compared with that of in-solution digestions. Multiple digestion by the tandem microreactors showed higher sequence coverage compared with that by in-solution or the single microreactor. Moreover, the tandem microreactor that was made by using the combination of protease-immobilized microreactor and phosphatase-immobilized microreactor showed the capability for phosphorylation site analysis in phosphoproteins without the use of any enrichment strategies or radioisotope labeling techniques. This approach provides a strategy that can be applied to various types of linking microreactor-based multienzymatic reaction systems for proteomic analysis.  相似文献   
12.
Plasmodium berghei: The effect of five protease inhibitors, TPCK, TLCK, PMSF, leupeptin, and 1,10-phenanthroline on in vitro gametogenesis and early zygote development of P. berghei was investigated. PMSF and leupeptin showed no effect. Cysteine/serine protease inhibitors TPCK/TLCK at concentrations of 75 and 100 microM were effective on inhibiting exflagellation center formation, and this effect was reversible with the addition of l-cysteine. Exflagellation center formation was most effectively blocked by 1,10-phenanthroline (1mM), and exflagellation center numbers were restored by the addition of Zn(2+). A reduction of ookinete production was observed when TPCK/TLCK (100 microM) was added at 2h after gametogenesis, but no effect was observed with 1,10-phenanthroline (1mM). Our results suggest that proteolysis is important in both gametocyte activation and sexual development of P. berghei.  相似文献   
13.
Aoyama M  Kawada T  Satake H 《Peptides》2012,34(1):186-192
We previously substantiated that Ci-TK, a tachykinin of the protochordate, Ciona intestinalis (Ci), triggered oocyte growth from the vitellogenic stage (stage II) to the post-vitellogenic stage (stage III) via up-regulation of the gene expression and enzymatic activity of the proteases: cathepsin D, carboxypeptidase B1, and chymotrypsin. In the present study, we have elucidated the localization, gene expression and activation profile of these proteases. In situ hybridization showed that the Ci-cathepsin D mRNA was present exclusively in test cells of the stage II oocytes, whereas the Ci-carboxypeptidase B1 and Ci-chymotrypsin mRNAs were detected in follicular cells of the stage II and stage III oocytes. Double-immunostaining demonstrated that the immunoreactivity of Ci-cathepsin D was largely colocalized with that of the receptor of Ci-TK, Ci-TK-R, in test cells of the stage II oocytes. Ci-cathepsin D gene expression was detected at 2h after treatment with Ci-TK, and elevated for up to 5h, and then slightly decreased. Gene expression of Ci-carboxypeptidase B1 and Ci-chymotrypsin was observed at 5h after treatment with Ci-TK, and then decreased. The enzymatic activities of Ci-cathepsin D, Ci-carboxypeptidase B1, and Ci-chymotrypsin showed similar alterations with 1-h lags. These gene expression and protease activity profiles verified that Ci-cathepsin D is initially activated, which is followed by the activation of Ci-carboxypeptidase B1 and Ci-chymotrypsin. Collectively, the present data suggest that Ci-TK directly induces Ci-cahtepsin D in test cells expressing Ci-TK receptor, leading to the secondary activation of Ci-chymotrypsin and Ci-carboxypeptidase B1 in the follicle in the tachykininergic oocyte growth pathway.  相似文献   
14.
Xu ZF  Teng WL  Chye ML 《Planta》2004,218(4):623-629
SaPIN2a, a proteinase inhibitor II from American black nightshade (Solanum americanum Mill.) is highly expressed in the phloem and could be involved in regulating proteolysis in the sieve elements. To further investigate the physiological role of SaPIN2a, we have produced transgenic lettuce (Lactuca sativa L.) expressing SaPIN2a from the CaMV35S promoter by Agrobacterium-mediated transformation. Stable integration of the SaPIN2a cDNA and its inheritance in transgenic lines were confirmed by Southern blot analysis and segregation analysis of the R1 progeny. SaPIN2a mRNA was detected in both the R0 and R1 transformants on northern blot analysis but the SaPIN2a protein was not detected on western blot analysis using anti-peptide antibodies against SaPIN2a. Despite an absence of significant inhibitory activity against bovine trypsin and chymotrypsin in extracts of transgenic lettuce, the endogenous trypsin-like activity in each transgenic line was almost completely inhibited, and the endogenous chymotrypsin-like activity moderately inhibited. Our finding that heterogeneously expressed SaPIN2a in transgenic lettuce inhibits plant endogenous protease activity further indicates that SaPIN2a regulates proteolysis, and could be potentially exploited for the protection of foreign protein production in transgenic plants.Abbreviations CaMV cauliflower mosaic virus - cDNA complementary DNA - NOS nopaline synthase - PAGE polyacrylamide gel electrophoresis - PI proteinase inhibitor - SaPIN2a Solanum americanum proteinase inhibitor IIa - SDS sodium dodecyl sulphate - T-DNA transferred DNA  相似文献   
15.
ClpX requires ATP to unfold protein substrates and translocate them into the proteolytic chamber of ClpP for degradation. The steady-state parameters for hydrolysis of ATP and ATPgammaS by ClpX were measured with different protein partners and the kinetics of degradation of ssrA-tagged substrates were determined with both nucleotides. ClpX hydrolyzed ATPgammaS to ADP and thiophosphate at a rate (6/min) significantly slower than ATP hydrolysis (140/min), but the hydrolysis of both nucleotides was increased by ssrA-tagged substrates and decreased by ClpP. K(M) and k(cat) for hydrolysis of ATP and ATPgammaS were linearly correlated over a 200-fold range, suggesting that protein partners largely affect k(cat) rather than nucleotide binding, indicating that most bound ATP leaves the enzyme by hydrolysis rather than dissociation, and placing an upper limit of approximately 15 micro M on K(D) for both nucleotides. Competition studies with ClpX and fluorescently labeled ADP gave inhibition constants for ATPgammaS ( approximately 2 micro M) and ADP ( approximately 3 micro M) under the reaction conditions used for steady-state kinetics. In the absence of Mg(2+), where hydrolysis does not occur, the inhibition constant for ATP ( approximately 55 micro M) was weaker but very similar to the value for ATPgammaS ( approximately 45 micro M). Compared with ATP, ATPgammaS supported slow but roughly comparable rates of ClpXP degradation for two Arc-ssrA substrates and denatured GFP-ssrA, but not of native GFP-ssrA. These results show that the processing of protein substrates by ClpX is closely coupled to the maximum rate of nucleotide hydrolysis.  相似文献   
16.
Alpha-crystallin, the major eye-lens protein with sequence homology with heat-shock proteins (HSPs), acts like a molecular chaperone by suppressing the aggregation of damaged crystallins and proteins. To gain more insight into its chaperoning ability, we used a protease as the model system that is known to require a propeptide (intramolecular chaperone) for its proper folding. The protease ("N" state) from Conidiobolus macrosporus (NCIM 1298) unfolds at pH 2.0 ("U" state) through a partially unfolded "I" state at pH 3.5 that undergoes transition to a molten globule-(MG) like "I(A)" state in the presence of 0.5 M sodium sulfate. The thermally-stressed I(A) state showed complete loss of structure and was prone to aggregation. Alpha-crystallin was able to bind to this state and suppress its aggregation, thereby preventing irreversible denaturation of the enzyme. The alpha-crystallin-bound I(A) state exhibited native-like secondary and tertiary structure showing the interaction of alpha-crystallin with the MG state of the protease. 8-Anilinonaphthalene sulphonate (ANS) binding studies revealed the involvement of hydrophobic interactions in the formation of the complex of alpha-crystallin and protease. Refolding of acid-denatured protease by dilution to pH 7.5 resulted in aggregation of the protein. Unfolding of the protease in the presence of alpha-crystallin and its subsequent refolding resulted in the generation of a near-native intermediate with partial secondary and tertiary structure. Our studies represent the first report of involvement of a molecular chaperone-like alpha-crystallin in the unfolding and refolding of a protease. Alpha-crystallin blocks the unfavorable pathways that lead to irreversible denaturation of the alkaline protease and keeps it in a near-native, folding-competent intermediate state.  相似文献   
17.
Previous studies have shown that the domestic mites Dermatophagoides pteronyssinus and D. farinae contain allergens with serine protease activity. These proteolytic allergens include trypsin, chymotrypsin, elastase, kallikrein, and C3/C5 convertase. However, it is not known whether the domestic mite Blomia tropicalis shares with other mite species the serine protease activities. The enzymatic activity present in extracts obtained from food-free B. tropicalis was investigated using specific substrates and inhibitors. Based upon the concentration response and inhibition profiles, and the digestion of specific substrates our data demonstrate that extracts from B. tropicalis exhibit several serine-protease-like activities. The enzyme activities detected in the B. tropicalis extracts are trypsin, elastase, chymotrypsin, kallikrein, C3/C5 convertase, and mast cell protease. Our results also demonstrate that kallikrein and C3/C5 convertase-like activities were not significantly affected by the α1-antiprotease, a naturally occurring serine protease inhibitor which protects lung mucosa from the enzymatic action. These data strongly suggest that the Echymyopodidae mite B. tropicalis shares at least five serine proteases with members of other mite families, the Glycyphagidae and Pyroglyphidae. In addition, our data demonstrate the potential use of biochemical methods to detect serine proteases for evaluation of mite growth in vitro, or to detect environmental exposures to these enzymes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
18.
Drosophila melanogaster embryos are a source for homogeneous and stable 26S proteasomes suitable for structural studies. For biochemical characterization, purified 26S proteasomes were resolved by two-dimensional (2D) gel electrophoresis and subunits composing the regulatory complex (RC) were identified by amino acid sequencing and immunoblotting, before corresponding cDNAs were sequenced. 17 subunits from Drosophila RCs were found to have homologues in the yeast and human RCs. An additional subunit, p37A, not yet described in RCs of other organisms, is a member of the ubiquitin COOH-terminal hydrolase family (UCH). Analysis of EM images of 26S proteasomes-UCH-inhibitor complexes allowed for the first time to localize one of the RC's specific functions, deubiquitylating activity.The masses of 26S proteasomes with either one or two attached RCs were determined by scanning transmission EM (STEM), yielding a mass of 894 kD for a single RC. This value is in good agreement with the summed masses of the 18 identified RC subunits (932 kD), indicating that the number of subunits is complete.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号