排序方式: 共有36条查询结果,搜索用时 0 毫秒
31.
32.
Mutant tRNAs containing an extra nucleotide in the anticodon loop are known to suppress +1 frameshift mutations, but in no case has the molecular mechanism been clarified. It has been proposed that the expanded anticodon pairs with a complementary mRNA sequence (the frameshift sequence) in the A site, and this quadruplet "codon-anticodon" helix is translocated to the P site to restore the correct reading frame. Here, we analyze the ability of tRNA analogs containing expanded anticodons to recognize and position mRNA in ribosomal complexes in vitro. In all cases tested, 8 nt anticodon loops position the 3' three-quarters of the frameshift sequence in the P site, indicating that the 5' bases of the expanded anticodon (nucleotides 33.5, 34, and 35) pair with mRNA in the P site. We also provide evidence that four base-pairs can form between the P-site tRNA and mRNA, and the fourth base-pair involves nucleotide 36 of the tRNA and lies toward (or in) the 30 S E site. In the A site, tRNA analogs with the expanded anticodon ACCG are able to recognize either CGG or GGU. These data imply a flexibility of the expanded anticodon in the A site. Recognition of the 5' three-quarters of the frameshift sequence in the A site and subsequent translocation of the expanded anticodon to the P site results in movement of mRNA by four nucleotides, explaining how these tRNAs can change the mRNA register in the ribosome to restore the correct reading frame. 相似文献
33.
Kinetic refolding barrier of guanidinium chloride denatured goose delta-crystallin leads to regular aggregate formation 下载免费PDF全文
Delta-crystallin is the major soluble protein in avian eye lenses with a structural role in light scattering. Dissociation and unfolding of the tetrameric protein in guanidinium chloride (GdmCl) can be sensitively monitored by the intrinsic tryptophan fluorescence. In this study refolding of GdmCl-denatured delta-crystallin was investigated. A marked hysteresis was observed while refolding by dilution of the 5 M GdmCl-denatured delta-crystallin. The secondary structure of the refolded protein was largely restored. However, monitoring intrinsic fluorescence of single tryptophan mutants indicated that the microenvironment of domain 1 (W74) was not restored. The region containing W169, which is close to the dimer interface, remained exposed following refolding. During refolding of the wild-type protein, dimeric, tetrameric, and aggregate forms were identified. The ratio of tetramer to dimer increased with time, as judged by gel-filtration chromatography and nondenaturing gel electrophoresis. However the observed levels of tetramer did not return to the same levels as observed before GdmCl treatment. The proportion of tetramer was significantly decreased in the N-25 deletion mutant and it did not increase with time. These results suggest that there is a kinetic barrier for assembly of dimers into tetramers. The consequence of this is that dimers refold to form aggregates. Aggregation seems to follow a nucleation mechanism with an apparent reaction order of 4.7+/-0.2, suggesting four or five monomers constitute the core structure of nucleus, which propagate to form high molecular weight aggregates. Addition of alpha-crystallin during refolding prevents aggregation. Thioflavin T and Congo red assays indicated a regular structure for the protein aggregates, which appear as hollow tubules packed into helical bundles. Aggregate formation was protein concentration dependent that progressed via two stages with rate constants of 0.0039+/-0.0006 and 0.00043+/-0.00003 s(-1), respectively. We propose that the N-terminal segment of delta-crystallin plays a critical role in proper double dimer assembly and also in the assembly of nucleus to aggregate formation. 相似文献
34.
CCA addition to the 3′ end is an essential step in tRNA maturation. High-resolution crystal structures of the CCA enzymes reveal primary enzyme contact with the tRNA minihelix domain, consisting of the acceptor stem and T stem-loop. RNA and DNA minihelices are efficient substrates for CCA addition in steady-state kinetics. However, in contrast to structural models and steady-state experiments, we show here by single-turnover kinetics that minihelices are insufficient substrates for the Escherichia coli CCA enzyme and that only the full-length tRNA is kinetically competent. Even a nick in the full-length tRNA backbone in the T loop, or as far away from the minihelix domain as in the anticodon loop, prevents efficient CCA addition. These results suggest a kinetic quality control provided by the CCA enzyme to inspect the integrity of the tRNA molecule and to discriminate against nicked or damaged species from further maturation. 相似文献
35.
Pai RD Zhang W Schuwirth BS Hirokawa G Kaji H Kaji A Cate JH 《Journal of molecular biology》2008,376(5):1334-1347
At the end of translation in bacteria, ribosome recycling factor (RRF) is used together with elongation factor G to recycle the 30S and 50S ribosomal subunits for the next round of translation. In x-ray crystal structures of RRF with the Escherichia coli 70S ribosome, RRF binds to the large ribosomal subunit in the cleft that contains the peptidyl transferase center. Upon binding of either E. coli or Thermus thermophilus RRF to the E. coli ribosome, the tip of ribosomal RNA helix 69 in the large subunit moves away from the small subunit toward RRF by 8 Å, thereby disrupting a key contact between the small and large ribosomal subunits termed bridge B2a. In the ribosome crystals, the ability of RRF to destabilize bridge B2a is influenced by crystal packing forces. Movement of helix 69 involves an ordered-to-disordered transition upon binding of RRF to the ribosome. The disruption of bridge B2a upon RRF binding to the ribosome seen in the present structures reveals one of the key roles that RRF plays in ribosome recycling, the dissociation of 70S ribosomes into subunits. The structures also reveal contacts between domain II of RRF and protein S12 in the 30S subunit that may also play a role in ribosome recycling. 相似文献
36.
Hugh Schieren Steven Rudolph Morris Finkelstein Peter Coleman Gerald Weissmann 《Biochimica et Biophysica Acta (BBA)/General Subjects》1978,542(1):137-153
Large unilamellar vesicles, prepared by a petroleum ether vaporization method, were compared to multilamellar vesicles with respect to a number of physical and functional properties. Rotational correlation time approximations, derived from ESR spectra of both hydrophilic (3-doxyl cholestane) and hydrophobic (3-doxyl androstanol) steroid spin probes, indicated similar molecular packing of lipids in bilayers of multilamellar and large unilamellar liposomes. Light scattering measurements demonstrated a reduction in apparent absorbance of large unilamellar vesicles, suggesting loss of multilamellar structure which was confirmed by electron microscopy. Furthermore, large unilamellar vesicles exhibited enhanced passive diffusion rates of small solutes, releasing a greater percentage of their contents within 90 min than multilamellar vesicles, and reflecting the less restricted diffusion of a unilamellar system. The volume trapping capacity of large unilamellar vesicles far exceeded that of multilamellar liposomes, except in the presence of a trapped protein, soy bean trypsin inhibitor, which reduced the volume of the aqueous compartments of large unilamellar vesicles. Finally, measurement of vesicle diameters from electron micrographs of large unilamellar vesicles showed a vesicle size distribution predominantly in the range of 0.1–0.4 μm with a mean diameter of 0.21 μm. 相似文献