首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   786篇
  免费   32篇
  国内免费   10篇
  2024年   1篇
  2023年   5篇
  2022年   6篇
  2021年   16篇
  2020年   16篇
  2019年   17篇
  2018年   17篇
  2017年   10篇
  2016年   14篇
  2015年   13篇
  2014年   37篇
  2013年   40篇
  2012年   27篇
  2011年   36篇
  2010年   31篇
  2009年   59篇
  2008年   81篇
  2007年   163篇
  2006年   46篇
  2005年   26篇
  2004年   19篇
  2003年   13篇
  2002年   9篇
  2001年   9篇
  2000年   7篇
  1999年   16篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1994年   9篇
  1993年   8篇
  1992年   5篇
  1991年   9篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   8篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1976年   2篇
  1975年   1篇
排序方式: 共有828条查询结果,搜索用时 15 毫秒
61.
Dihydrosphingosine C4 hydroxylase is a key enzyme in the biosynthesis of phytosphingosine, a major constituent of sphingolipids in plants and yeasts. The rice genome contains five homologue genes for dihydrosphingosine C4 hydroxylase, DSH1-DSH5, whose gene products show high degrees of homology to the yeast counterpart, SUR2. Among them, expression of DSH1, DSH2 and DSH4 was detected, and DSH1 and DSH4 complement the yeast sur2 mutation. The DSH1 gene was specifically and abundantly expressed in vascular bundles and apical meristems. In particular, very strong expression was detected in the stigmas of flowers. Repression of DSH1 expression by the antisense gene or RNA interference (RNAi) resulted in a severe reduction of fertility. In the transformants in which DSH1 expression was suppressed, significantly increased expression of DSH2 was found in leaves but not in pistils, suggesting that there was tissue-specific correlation between DSH1 and DSH2 expression. Our results indicate that the product of DSH1 may be involved in plant viability or reproductive processes, and that the phenotype of sterility is apparently caused by loss of function of DSH1 in the stigma. It is also suggested that there is a complex mechanism controlling the tissue-specific expression of the DSH1 gene.  相似文献   
62.
63.
The microtubule-associated protein AtMAP65-1 from Arabidopsis thaliana dimerizes and forms 25 nm cross-bridges between microtubules, but the exact mechanism is unknown. Here, we used the predicted three-dimensional structure of AtMAP65-1 as a basis for analyzing the actual cross-bridging in detail. Fold-recognition predicts that AtMAP65-1 contains four coiled-coil domains and a flexible extended loop. The length of these coiled-coil domains is about 25 nm, suggesting that one molecule could span the gap, hence forming an antiparallel overlapping dimer instead of an end-to-end dimer. We then tested this model by using truncations of AtMAP65-1. EDC {[3-(dimethylamino) propyl] carbodiimide} cross-linking analysis indicated that the N-terminus of the rod domain of AtMAP65-1 (amino acids 1-339) binds to the C-terminus of the rod domain (amino acids 340-494) and also participates in connecting the two antiparallel proteins in the cross-bridge. Nevertheless, microtubules can still form bundles in the presence of AtMAP65-1 340-587 (amino acids 340-587) or AtMAP65-1 1-494 (amino acids 1-494). Comparing the cold stability of microtubule bundles induced by full-length AtMAP65-1 with that of AtMAP65-1 340-587 or AtMAP65-1 1-494, we conclude that AtMAP65-1 495-587 acts as a flexible extended loop, playing a crucial role in binding to and stabilizing microtubules in the AtMAP65-1 cross-bridge.  相似文献   
64.
Salt tolerance requires cortical microtubule reorganization in Arabidopsis   总被引:1,自引:0,他引:1  
Wang C  Li J  Yuan M 《Plant & cell physiology》2007,48(11):1534-1547
Although the results of some studies indicate that salt stress affects the organization of microtubules, it remains an open question whether microtubules play an active role in the plant's ability to withstand salt stress. In the present study, we showed that salt stress-induced wild-type Arabidopsis seedling roots display right-handed skewed growth and depolymerization of the cortical microtubules. The results of a long-term observational study showed that cortical microtubules depolymerized then reorganized themselves under salt stress. Stabilization of microtubules with paclitaxel resulted in more seedling death under salt stress, while disruption of microtubules with oryzalin or propyzamide rescued seedlings from death. Seedlings in which the cortical microtubules were reorganized did not succumb to salt stress. These results suggest that both depolymerization and reorganization of the cortical microtubules are important for the plant's ability to withstand salt stress. Depolymerizing microtubules by drugs rescues seedlings from death under salt stress. This rescue effect was abolished by removing calcium from the medium or treatment with a calcium channel inhibitor. Depolymerization of the microtubules is followed by an increase in the free cytoplasmic calcium concentration. The addition of calcium to the growth medium increased the number of seedlings in which recovery of the cortical microtubules occurred, whereas the removal of calcium decreased the number of seedlings in which recovery occurred. Therefore, depolymerization of the cortical microtubules raises intracellular calcium concentrations, while reorganization of the cortical microtubules and seedling survival may be mediated by calcium influx in salt stress.  相似文献   
65.
Although the Dasycladalean alga Acetabularia acetabulum has long been known to contain mannan-rich walls, it is not known to what extent wall composition varies as a function of the elaborate cellular differentiation of this cell, nor has it been determined what other polysaccharides accompany the mannans. Cell walls were prepared from rhizoids, stalks, hairs, hair scars, apical septa, gametophores and gametangia, subjected to nuclear magnetic resonance and Fourier transform infrared spectroscopy, and analyzed for monosaccharide composition and linkage, although material limitations prevented some cell regions from being analyzed by some of the methods. In diplophase, walls contain a para-crystalline mannan, with other polysaccharides accounting for 10-20% of the wall mass; in haplophase, gametangia have a cellulosic wall, with mannans and other polymers representing about a quarter of the mass. In the walls of the diplophase, the mannan appears less crystalline than typical of cellulose. The walls of both diploid and haploid phases contain little if any xyloglucan or pectic polysaccharides, but appear to contain small amounts of a homorhamnan, galactomannans and glucogalactomannans, and branched xylans. These ancillary polysaccharides are approximately as abundant in the cellulose-rich gametangia as in the mannan-rich diplophase. In the diplophase, different regions of the cell differ modestly but reproducibly in the composition of the cell wall. These results suggest unique cell wall architecture for the mannan-rich cell walls of the Dasycladales.  相似文献   
66.
In higher plants, circadian rhythms are highly relevant to a wide range of biological processes. To such circadian rhythms, the clock (oscillator) is central, and recent intensive studies on the model higher plant Arabidopsis thaliana have begun to shed light on the molecular mechanisms underlying the functions of the central clock. Such representative clock-associated genes of A. thaliana are the homologous CCA1 and LHY genes, and five PRR genes that belong to a small family of pseudo-response regulators including TOC1. Others are GI, ZTL, ELF3, ELF4, LUX/PCL1, etc. In this context, a simple question arose as to whether or not the molecular picture of the model Arabidopsis clock is conserved in other higher plants. Here we made an effort to answer the question with special reference to Oryza sativa, providing experimental evidence that this model monocot also has a set of highly conserved clock-associated genes, such as those designated as OsCCA1, OsPRR-series including OsTOC1/OsPRR1, OsZTLs, OsPCL1 as well as OsGI. These results will provide us with insight into the general roles of plant circadian clocks, such as those for the photoperiodic control of flowering time that has a strong impact on the reproduction and yield in many higher plants.  相似文献   
67.
The aim of the present study was to identify water channel(s) which are expressed specifically in the growth zone of grass leaves and may facilitate growth-associated water uptake into cells. Previously, a gene had been described (HvEmip) which encodes a membrane intrinsic protein (MIP) and which is particularly expressed in the base 1 cm of barley primary leaves. The functionality of the encoding protein was not known. In the present study on leaf 3 of barley (Hordeum vulgare L.), a clone was isolated, termed HvPIP1;6, which has 99% amino acid sequence identity to HvEmip and belongs to the family of plasma membrane intrinsic proteins (PIPs). Expression of HvPIP1;6 was highest in the elongation zone, where it accounted for >85% of expression of known barley PIP1s. Within the elongation zone, faster grower regions showed higher expression than slower growing regions. Expression of HvPIP1;6 was confined to the epidermis, with some expression in neighboring mesophyll cells. Expression of HvPIP1;6 in Xenopus laevis oocytes increased osmotic water permeability 4- to 6-fold. Water channel activity was inhibited by pre-incubation of oocytes with 50 microM HgCl(2) and increased following incubation with the phosphatase inhibitor okadaic acid or the plant hormone ABA. Plasma membrane preparations were analyzed by Western blots using an antibody that recognized PIP1s. Levels of PIP1s were highest in the elongation and adjacent non-elongation zone. The developmental expression profile of HvPIP2;1, the only known barley water channel belonging to the PIP2 subgroup, was opposite to that of HvPIP1;6.  相似文献   
68.
Plant annexins, Ca(2+)- and membrane-binding proteins, are probably implicated in the cellular response to stress resulting from acidification of cytosol. To understand how annexins can contribute to cellular ion homeostasis, we investigated the pH-induced changes in the structure and function of recombinant annexin AnnAt1 from Arabidopsis thaliana. The decrease of pH from 7.0 to 5.8 reduced the time of the formation of ion channels by AnnAt1 in artificial lipid membranes from 3.5 h to 15-20 min and increased their unitary conductance from 32 to 63 pS. These changes were accompanied by an increase in AnnAt1 hydrophobicity as revealed by hydrophobicity predictions, by an increase in fluorescence of 2-(p-toluidino)naphthalene-6-sulfonic acid (TNS) bound to AnnAt1 and fluorescence resonance energy transfer from AnnAt1 tryptophan residues to TNS. Concomitant lipid partition of AnnAt1 at acidic pH resulted in its partial protection from proteolytic digestion. Secondary structures of AnnAt1 determined by circular dichroism and infrared spectroscopy were also affected by lowering the pH from 7.2 to 5.2. These changes were characterized by an increase in beta-sheet content at the expense of alpha-helical structures, and were accompanied by reversible formation of AnnAt1 oligomers as probed by ultracentrifugation in a sucrose gradient. A further decrease of pH from 5.2 to 4.5 or lower led to the formation of irreversible aggregates and loss of AnnAt1 ionic conductance. Our findings suggest that AnnAt1 can sense changes of the pH milieu over the pH range from 7 to 5 and respond by changes in ion channel conductance, hydrophobicity, secondary structure of the protein and formation of oligomers. Further acidification irreversibly inactivated AnnAt1. We suggest that the pH-sensitive ion channel activity of AnnAt1 may play a role in intracellular ion homeostasis.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号