首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   15篇
  国内免费   7篇
  2024年   1篇
  2023年   4篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2017年   8篇
  2016年   6篇
  2015年   7篇
  2014年   25篇
  2013年   17篇
  2012年   33篇
  2011年   19篇
  2010年   15篇
  2009年   24篇
  2008年   8篇
  2007年   15篇
  2006年   7篇
  2005年   10篇
  2004年   11篇
  2003年   11篇
  2002年   10篇
  2001年   8篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1996年   1篇
  1990年   1篇
  1984年   1篇
排序方式: 共有272条查询结果,搜索用时 62 毫秒
61.
Senescent cells accumulate in tissues during aging and are considered to underlie several aging‐associated phenotypes and diseases. We recently reported that the elimination of p19ARF‐expressing senescent cells from lung tissue restored tissue function and gene expression in middle‐aged (12‐month‐old) mice. The aging of lung tissue increases the risk of pulmonary diseases such as emphysema, and cellular senescence is accelerated in emphysema patients. However, there is currently no direct evidence to show that cellular senescence promotes the pathology of emphysema, and the involvement of senescence in the development of this disease has yet to be clarified. We herein demonstrated that p19ARF facilitated the development of pulmonary emphysema in mice. The elimination of p19ARF‐expressing cells prevented lung tissue from elastase‐induced lung dysfunction. These effects appeared to depend on reduced pulmonary inflammation, which is enhanced after elastase stimulation. Furthermore, the administration of a senolytic drug that selectively kills senescent cells attenuated emphysema‐associated pathologies. These results strongly suggest the potential of senescent cells as therapeutic/preventive targets for pulmonary emphysema.  相似文献   
62.
63.
64.
The small-GTPase family of ADP ribosylation factors (ARFs) recruit coat proteins to promote vesicle budding. ARFs are activated by an association with sec7-containing exchange factors which load them with GTP. In epithelial cells, the small GTPase ARF6 operates within the endocytic system and has been shown to associate with ARNO to promote apical endocytosis and early to late endosomal trafficking. EFA6 has been shown to stimulate tight-junction formation and maintenance. Here, we show that in polarized epithelial MDCK cells, EFA6 is localized to early endosomes, causes their dramatic enlargement, and promotes basolateral targeting of IgA, which is normally targeted to the apical PM. These results suggest that the physiological function of ARF6 within the endocytic system is regulated by the exchange factor it associates with.  相似文献   
65.
The JNK‐interacting proteins, JIP3 and JIP4, are specific effectors of the small GTP‐binding protein ARF6. The interaction of ARF6–GTP with the second leucine zipper (LZII) domains of JIP3/JIP4 regulates the binding of JIPs to kinesin‐1 and dynactin. Here, we report the crystal structure of ARF6–GTP bound to the JIP4‐LZII at 1.9 Å resolution. The complex is a heterotetramer with dyad symmetry arranged in an ARF6–(JIP4)2ARF6 configuration. Comparison of the ARF6–JIP4 interface with the equivalent region of ARF1 shows the structural basis of JIP4's specificity for ARF6. Using site‐directed mutagenesis and surface plasmon resonance, we further show that non‐conserved residues at the switch region borders are the key structural determinants of JIP4 specificity. A structure‐derived model of the association of the ARF6–JIP3/JIP4 complex with membranes shows that the JIP4‐LZII coiled‐coil should lie along the membrane to prevent steric hindrances, resulting in only one ARF6 molecule bound. Such a heterotrimeric complex gives insights to better understand the ARF6‐mediated motor switch regulatory function.  相似文献   
66.
Two-dimensional electron spin-echo envelope modulation (ESEEM) analysis of the uniformly 15N-labeled archaeal Rieske-type [2Fe-2S] ferredoxin (ARF) from Sulfolobus solfataricus P1 has been conducted in comparison with the previously characterized high-potential protein homologs. Major differences among these proteins were found in the hyperfine sublevel correlation (HYSCORE) lineshapes and intensities of the signals in the (++) quadrant, which are contributed from weakly coupled (non-coordinated) peptide nitrogens near the reduced clusters. They are less pronounced in the HYSCORE spectra of ARF than those of the high-potential protein homologs, and may account for the tuning of Rieske-type clusters in various redox systems.  相似文献   
67.
68.
The molecular mechanisms underlying cytoskeleton‐dependent Golgi positioning are poorly understood. In mammalian cells, the Golgi apparatus is localized near the juxtanuclear centrosome via dynein‐mediated motility along microtubules. Previous studies implicate Cdc42 in regulating dynein‐dependent motility. Here we show that reduced expression of the Cdc42‐specific GTPase‐activating protein, ARHGAP21, inhibits the ability of dispersed Golgi membranes to reposition at the centrosome following nocodazole treatment and washout. Cdc42 regulation of Golgi positioning appears to involve ARF1 and a binding interaction with the vesicle‐coat protein coatomer. We tested whether Cdc42 directly affects motility, as opposed to the formation of a trafficking intermediate, using a Golgi capture and motility assay in permeabilized cells. Disrupting Cdc42 activation or the coatomer/Cdc42 binding interaction stimulated Golgi motility. The coatomer/Cdc42‐sensitive motility was blocked by the addition of an inhibitory dynein antibody. Together, our results reveal that dynein and microtubule‐dependent Golgi positioning is regulated by ARF1‐, coatomer‐, and ARHGAP21‐dependent Cdc42 signaling.  相似文献   
69.
p14ARF是新近发现的一种具有细胞周期调节功能的抑癌基因,P14ARF主要定位于核仁,但也有少部分位于核质。p14ARF在部分人类肿瘤中频发失活,其表达异常导致肿瘤的发生机制及以P14ARF为靶点进行的肿瘤治疗越来越受到重视。现对于Pl4ARF相关信号通路的研究进展进行了综述。  相似文献   
70.
Engulfment of particles by phagocytes is induced by their interaction with specific receptors on the cell surface, which leads to actin polymerization and the extension of membrane protrusions to form a closed phagosome. Membrane delivery from internal pools is considered to play an important role in pseudopod extension during phagocytosis. Here, we report that endogenous ADP ribosylation factor 6 (ARF6), a small GTP-binding protein, undergoes a sharp and transient activation in macrophages when phagocytosis was initiated via receptors for the Fc portion of immunoglobulins (FcRs). A dominant-negative mutant of ARF6 (T27N mutation) dramatically affected FcR-mediated phagocytosis. Expression of ARF6-T27N lead to a reduction in the focal delivery of vesicle-associated membrane protein 3+ endosomal recycling membranes at phagocytosis sites, whereas actin polymerization was unimpaired. This resulted in an early blockade in pseudopod extension and accumulation of intracellular vesicles, as observed by electron microscopy. We conclude that ARF6 is a major regulator of membrane recycling during phagocytosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号