首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252篇
  免费   14篇
  国内免费   7篇
  273篇
  2024年   2篇
  2023年   4篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2017年   8篇
  2016年   6篇
  2015年   7篇
  2014年   25篇
  2013年   17篇
  2012年   33篇
  2011年   19篇
  2010年   15篇
  2009年   24篇
  2008年   8篇
  2007年   15篇
  2006年   7篇
  2005年   10篇
  2004年   11篇
  2003年   11篇
  2002年   10篇
  2001年   8篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1996年   1篇
  1990年   1篇
  1984年   1篇
排序方式: 共有273条查询结果,搜索用时 0 毫秒
41.
The ARF tumor suppressor, encoded by the CDKN2A gene, has a well-defined role regulating TP53 stability; this activity maps to exon 1β of CDKN2A. In contrast, little is known about the function(s) of exon 2 of ARF, which contains the majority of mutations in human cancer. In addition to controlling TP53 stability, ARF also has a role in the induction of autophagy. However, whether the principal molecule involved is full-length ARF, or a small molecular weight variant called smARF, has been controversial. Additionally, whether tumor-derived mutations in exon 2 of CDKN2A affect ARF’s autophagy function is unknown. Finally, whereas it is known that silencing or inhibiting TP53 induces autophagy, the contribution of ARF to this induction is unknown. In this report we used multiple autophagy assays to map a region located in the highly conserved 5′ end of exon 2 of CDKN2A that is necessary for autophagy induction by both human and murine ARF. We showed that mutations in exon 2 of CDKN2A that affect the coding potential of ARF, but not p16INK4a, all impair the ability of ARF to induce autophagy. We showed that whereas full-length ARF can induce autophagy, our combined data suggest that smARF instead induces mitophagy (selective autophagy of mitochondria), thus potentially resolving some confusion regarding the role of these variants. Finally, we showed that silencing Tp53 induces autophagy in an ARF-dependent manner. Our data indicated that a conserved domain in ARF mediates autophagy, and for the first time they implicate autophagy in ARF’s tumor suppressor function.  相似文献   
42.
He L  Fan C  Ning X  Feng X  Liu Y  Chen B  Tang D 《Cell biology international》2008,32(10):1302-1309
We report an association between p14ARF and Brca1 in which both proteins co-immunoprecipitate (co-IP) in DU145 cells. The N-terminal 64 residues of p14ARF encoded by exon 1beta are sufficient for this association. Inside the cell, ectopic p14ARF co-localizes with ectopic and endogenous Brca1 in A375 cells. Endogenous p14ARF co-localizes with endogenous Brca1 in DU145 cells but not in H1299 cells. Since p14ARF interacts with B23 in the nucleolus, Brca1 co-localizes with B23 in DU145 but not in H1299 cells. While ectopic ARF potently inhibited DU145 cell proliferation, it had no effect on the proliferation of H1299 cells, suggesting that the interaction between ARF and Brca1 contributes to ARF-mediated tumor suppression. Consistent with this notion, ectopic p14ARF modulates endogenous Brca1 expression in MCF7 breast cancer cells and p14ARF co-localizes with Brca1 in normal breast epithelial cells. This co-localization is enhanced in primary breast cancer. Taken together, the results show that p14ARF associates with Brca1, which may play a major role in tumor suppression.  相似文献   
43.
Secretory and endocytic traffic through the post-Golgi endomembrane system regulates the abundance of plasma-membrane proteins such as receptors, transporters and ion channels, modulating the ability of a cell to communicate with its neighbours and to adapt to a changing environment. The major post-Golgi compartments are numerous and appear to be similar to their counterparts in animals. However, endosomes are rather ill defined morphologically but seem to be involved in specific trafficking pathways. Many plasma-membrane proteins cycle constitutively via endosomal compartments. The trans -Golgi network (TGN) appears to be an early endosome where secretory and endocytic traffic meet. Endocytosed proteins that are to be degraded are targeted to the vacuole via the multivesiculate prevacuolar compartment (PVC) whereas cycling proteins pass through recycling endosomes. The trafficking machinery involves the same classes of proteins as in other eukaryotes. However, there are modifications that match the specifics of post-Golgi traffic in plants. Although plants lack epithelia, some plasma-membrane proteins are located on specific faces of the cell which reflects polarized traffic and influences the physiological performance of the tissue. Plants also differentiate highly polarized tip-growing cells in which post-Golgi traffic is adapted to very high rates of targeted exocytosis, endocytosis and recycling.  相似文献   
44.
Victor W. Hsu  Jia-Shu Yang 《FEBS letters》2009,583(23):3758-19041
Coat Protein I (COPI) is one of the most intensely investigated coat complexes. Numerous studies have contributed to a general understanding of how coat proteins act to initiate intracellular vesicular transport. This review highlights key recent findings that have shaped our current understanding of how COPI vesicles are formed.  相似文献   
45.
ADP-ribosylation factors (ARFs) and their activating guanine nucleotide exchange factors (GEFs) play key roles in membrane traffic and signaling. All ARF GEFs share a ~200-residue Sec7 domain (Sec7d) that alone catalyzes the GDP to GTP exchange that activates ARF. We determined the crystal structure of human BIG2 Sec7d. A C-terminal loop immediately following helix J (loop>J) was predicted to form contacts with helix H and the switch I region of the cognate ARF, suggesting that loop>J may participate in the catalytic reaction. Indeed, we identified multiple alanine substitutions within loop>J of the full length and/or Sec7d of two large brefeldin A-sensitive GEFs (GBF1 and BIG2) and one small brefeldin A-resistant GEF (ARNO) that abrogated binding of ARF and a single alanine substitution that allowed ARF binding but inhibited GDP to GTP exchange. Loop>J sequences are highly conserved, suggesting that loop>J plays a crucial role in the catalytic activity of all ARF GEFs. Using GEF mutants unable to bind ARF, we showed that GEFs associate with membranes independently of ARF and catalyze ARF activation in vivo only when membrane-associated. Our structural, cell biological, and biochemical findings identify loop>J as a key regulatory motif essential for ARF binding and GDP to GTP exchange by GEFs and provide evidence for the requirement of membrane association during GEF activity.  相似文献   
46.
Skotomorphogenic development is the process by which seedlings adapt to a stressful dark environment. Such metabolic responses to abiotic stresses in plants are known to be regulated in part by microRNAs (miRNAs); however, little is known about the involvement of miRNAs in the regulation of skotomorphogenesis. To identify miRNAs at the genome-wide level in skotomorphogenic seedlings of turnip (Brassica rapa subsp. rapa), an important worldwide root vegetable, we used Solexa sequencing to sequence a small RNA library from seedlings grown in the dark for 4 days. Deep sequencing showed that the small RNAs (sRNAs) were predominantly 21 to 24 nucleotides long. Specifically, 13,319,035 reads produced 359,531 unique sRNAs including rRNA, tRNA, miRNA, small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), and unannotated sRNAs. Sequence analysis identified 96 conserved miRNAs belonging to 36 miRNA families and 576 novel miRNAs. qRT-PCR confirmed that the miRNAs were expressed during skotomorphogenesis similar to the trends shown by the Solexa sequencing results. A total of 2013 potential targets were predicted, and the targets of BrmiR157, BrmiR159 and BrmiR160 were proved to be regulated by miRNA-guided cleavage. These results show that specific regulatory miRNAs are present in skotomorphogenic seedlings of turnip and may play important roles in growth, development, and response to dark environment.  相似文献   
47.
MKK7 and ARF     
Sensing, integrating, and processing of stressogenic signals must be followed by accurate differential response(s) for a cell to survive and avoid malignant transformation. The DNA damage response (DDR) pathway is vital in this process, as it deals with genotoxic/oncogenic insults, having p53 as a nodal effector that performs most of the above tasks. Accumulating data reveal that other pathways are also involved in the same or similar processes, conveying also to p53. Emerging questions are if, how, and when these additional pathways communicate with the DDR axis. Two such stress response pathways, involving the MKK7 stress-activated protein kinase (SAPK) and ARF, have been shown to be interlocked with the ATM/ATR-regulated DDR axis in a highly ordered manner. This creates a new landscape in the DDR orchestrated response to genotoxic/oncogenic insults that is currently discussed.  相似文献   
48.
Filamentous phytopathogens, such as fungi and oomycetes, secrete effector proteins to establish successful interactions with their plant hosts. In contrast with oomycetes, little is known about effector functions in true fungi. We used a bioinformatics pipeline to identify Blumeria effector candidates (BECs) from the obligate biotrophic barley powdery mildew pathogen, Blumeria graminis f. sp. hordei (Bgh). BEC1BEC5 are expressed at different time points during barley infection. BEC1, BEC2 and BEC4 have orthologues in the Arabidopsis thaliana‐infecting powdery mildew fungus Golovinomyces orontii. Arabidopsis lines stably expressing the G. orontii BEC2 orthologue, GoEC2, are more susceptible to infection with the non‐adapted fungus Erysiphe pisi, suggesting that GoEC2 contributes to powdery mildew virulence. For BEC3 and BEC4, we identified thiopurine methyltransferase, a ubiquitin‐conjugating enzyme, and an ADP ribosylation factor‐GTPase‐activating protein (ARF‐GAP) as potential host targets. Arabidopsis knockout lines of the respective HvARF‐GAP orthologue (AtAGD5) allowed higher entry levels of E. pisi, but exhibited elevated resistance to the oomycete Hyaloperonospora arabidopsidis. We hypothesize that ARF‐GAP proteins are conserved targets of powdery and downy mildew effectors, and we speculate that BEC4 might interfere with defence‐associated host vesicle trafficking.  相似文献   
49.
Genetic transformation of maize is highly dependent on the development of embryonic calli from the dedifferentiated immature embryo. To better understand the regulatory mechanism of immature embryo dedifferentiation, we generated four small RNA and degradome libraries from samples representing the major stages of dedifferentiation. More than 186 million raw reads of small RNA and degradome sequence data were generated. We detected 102 known miRNAs belonging to 23 miRNA families. In total, we identified 51, 70 and 63 differentially expressed miRNAs (DEMs) in the stage I, II, III samples, respectively, compared to the control. However, only 6 miRNAs were continually up-regulated by more than fivefold throughout the process of dedifferentiation. A total of 87 genes were identified as the targets of 21 DEM families. This group of targets was enriched in members of four significant pathways including plant hormone signal transduction, antigen processing and presentation, ECM-receptor interaction, and alpha-linolenic acid metabolism. The hormone signal transduction pathway appeared to be particularly significant, involving 21 of the targets. While the targets of the most significant DEMs have been proved to play essential roles in cell dedifferentiation. Our results provide important information regarding the regulatory networks that control immature embryo dedifferentiation in maize.  相似文献   
50.
自噬是一种在进化上保守的溶酶体依赖的降解途径.在缺乏营养的条件下,细胞会产生自噬体与溶酶体融合形成自噬溶酶体,并会通过自噬来降解自身物质.之后溶酶体会从自噬溶酶体再生,这个进化上保守的过程称为自噬性溶酶体再生(ALR),该过程由长时程饥饿中mTOR重激活引起.我们课题组在之前的研究工作中筛选出ARF1的GAP蛋白ASAP1参与调解ALR.本文在之前工作的基础上,发现ARF1会在ALR过程中转位到自噬溶酶体上.敲低ASAP1或者过表达连有GFP标签的ARF1的GTP形式,会抑制mTOR的重激活以及ALR.因此,ARF1以及ASAP1是通过调节mTOR的重激活而调控ALR发生.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号