首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   8篇
  国内免费   2篇
  2023年   2篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   13篇
  2018年   21篇
  2017年   11篇
  2016年   6篇
  2015年   5篇
  2014年   29篇
  2013年   42篇
  2012年   21篇
  2011年   32篇
  2010年   23篇
  2009年   13篇
  2008年   25篇
  2007年   23篇
  2006年   13篇
  2005年   11篇
  2004年   11篇
  2003年   11篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1985年   1篇
  1984年   5篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有346条查询结果,搜索用时 15 毫秒
151.
α1D-Adrenergic receptors, key regulators of cardiovascular system function, are organized as a multi-protein complex in the plasma membrane. Using a Type-I PDZ-binding motif in their distal C-terminal domain, α1D-ARs associate with syntrophins and dystrophin-associated protein complex (DAPC) members utrophin, dystrobrevin and α-catulin. Three of the five syntrophin isoforms (α, β1 and β2) interact with α1D-ARs and our previous studies suggest multiple isoforms are required for proper α1D-AR function in vivo. This study determined the contribution of each specific syntrophin isoform to α1D-AR function. Radioligand binding experiments reveal α-syntrophin enhances α1D-AR binding site density, while phosphoinositol and ERK1/2 signaling assays indicate β2-syntrophin augments full and partial agonist efficacy for coupling to downstream signaling mechanisms. The results of this study provide clear evidence that the cytosolic components within the α1D-AR/DAPC signalosome significantly alter the pharmacological properties of α1-AR ligands in vitro.  相似文献   
152.
Gao M  Wang M  Miller KD  Zheng QH 《Steroids》2011,76(13):1505-1512
The androgen receptor (AR) is an attractive target for the treatment and molecular imaging of prostate cancer. New carbon-11-labeled propanamide derivatives were first designed and synthesized as selective androgen receptor modulator (SARM) radioligands for prostate cancer imaging using the biomedical imaging technique positron emission tomography (PET). The target tracers, (S)-N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-3-(2-[11C]methoxyphenoxy)-2-methylpropanamide ([11C]8a), (S)-2-hydroxy-3-(2-[11C]methoxyphenoxy)-2-methyl-N-(4-nitro-3-(trifluoromethyl)phenyl)propanamide ([11C]8e), (S)-N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-3-(4-[11C]methoxyphenoxy)-2-methylpropanamide ([11C]8c) and (S)-2-hydroxy-3-(4-[11C]methoxyphenoxy)-2-methyl-N-(4-nitro-3-(trifluoromethyl)phenyl)propanamide ([11C]8g), were prepared by O-[11C]methylation of their corresponding precursors, (S)-N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-3-(2-hydroxyphenoxy)-2-methylpropanamide (9a), (S)-2-hydroxy-3-(2-hydroxyphenoxy)-2-methyl-N-(4-nitro-3-(trifluoromethyl)phenyl)propanamide (9b), (S)-N-(4-cyano-3-(trifluoromethyl)phenyl)-2-hydroxy-3-(4-hydroxyphenoxy)-2-methylpropanamide (9c) and (S)-2-hydroxy-3-(4-hydroxyphenoxy)-2-methyl-N-(4-nitro-3-(trifluoromethyl)phenyl)propanamide (9d), with [11C]CH3OTf under basic conditions and isolated by a simplified C-18 solid-phase extraction (SPE) method in 55 ± 5% (n = 5) radiochemical yields based on [11C]CO2 and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 23 min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 277.5 ± 92.5 GBq/μmol (n = 5).  相似文献   
153.
1-(1-Acetyl-piperidin-4-yl)-3-adamantan-1-yl-urea 14a (AR9281), a potent and selective soluble epoxide hydrolase inhibitor, was recently tested in a phase 2a clinical setting for its effectiveness in reducing blood pressure and improving insulin resistance in pre-diabetic patients. In a mouse model of diet induced obesity, AR9281 attenuated the enhanced glucose excursion following an intraperitoneal glucose tolerance test. AR9281 also attenuated the increase in blood pressure in angiotensin-II-induced hypertension in rats. These effects were dose-dependent and well correlated with inhibition of the sEH activity in whole blood, consistent with a role of sEH in the observed pharmacology in rodents.  相似文献   
154.
Protein kinase CK2 is a ubiquitously expressed serine/threonine kinase consisting of two catalytic α/α′ and two regulatory β subunits. Expression of CK2 is highly elevated in tumor cells where it protects cells from apoptosis. Accordingly inhibition of CK2 is known to induce programmed cell death, making it a promising target for cancer therapy. In the present study we investigated apoptosis induction by the CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) in prostate tumor cells. In contrast to PC-3 cells LNCaP cells respond to CK2 inhibition with apoptosis. Most interestingly we found the mitochondrial pathway induced in LNCaP as well as in PC-3 cells as monitored by down-regulation of bcl-2 and subsequent cytochrome c release. In both cell lines activation of caspase 9 was not detected. Instead, an activation of the endoplasmic reticulum (ER) stress response in LNCaP cells after treatment with the CK2 inhibitor TBB was found. We show that this ER stress response led to an up-regulation of the death receptor DR5 and subsequent apoptosis in LNCaP cells.  相似文献   
155.
G protein-coupled receptors (GPCRs) can engage multiple pathways to activate ERK1/2 via both G proteins and/or ßarrestin. Receptor recruitment of ßarrestin is also important for GPCR desensitization, internalization and resensitization. Modulation of the receptor/ßarrestin interaction through modification of either component would presumably alter the output generated by receptor activation. Here we examined how ßarrestins regulate bradykinin (BK) B2 receptor (B2R) signalling and desensitization by either truncating ßarrestin1 or ßarrestin2 or by alanine substitution of a serine/threonine cluster in the C-terminal tail of B2R (B2R-4A), conditions which all affect the avidity of the B2R/ßarrestin complex. We first demonstrate that BK-mediated ERK1/2 activation is biphasic containing an early peak (between 2-5 min) followed by sustained activation for at least 60 min. The early but not the sustained phase was predictably affected by inhibition of either Gαq/11 or Gαi/o, whereas loss of ßarrestin2 but not ßarrestin1 resulted in diminished prolonged ERK1/2 activation. ßarrestin2's role was further examined using a truncation mutant with augmented avidity for the agonist-occupied receptor, revealing an increase in both immediate and extended ERK1/2 signalling. We also show that ERK1/2 is recruited to the B2R/ßarrestin complex on endosomes as well as the plasma membrane. Moreover, we investigated ßarrestin's role using the B2R-4A, which is deficient in ßarrestin binding and does not internalize. We show that ERK1/2 signalling downstream of the receptor is entirely G protein-dependent and receptor-mediated intracellular calcium mobilization studies revealed a lack of desensitization. Functionally, the lack of desensitization resulted in increased cell growth and migration compared to the wild-type receptor, which was sensitive to MEK inhibition. These results highlight ßarrestin's crucial role in the maintenance of proper B2R signalling.  相似文献   
156.
Prostate cancer may originate from distinct cell types, resulting in the heterogeneity of this disease. Galectin-3 (Gal-3) and androgen receptor (AR) have been reported to play important roles in the progression of prostate cancer, and their heterogeneous expressions might be associated with different cancer subtypes. Our study found that in various prostate cancer cell lines Gal-3 expression was always opposite to AR expression and other luminal cell markers but consistent with basal cell markers including glutathione S-transferase and Bcl-2. This expression pattern was confirmed in human prostate cancer tissues. Our results also showed that prostate cancer cells positive with basal cell markers were more aggressive. Downregulation of Gal-3 expression resulted in increased apoptotic potential and decreased metastasis potential of prostate cancer cells. Our findings demonstrate for the first time that Gal-3 may serve as a new marker for basal characteristics of prostate cancer epithelium. This study helps us to better understand the heterogeneity of prostate cancer. The clinical significance of this study lies in the application of Gal-3 to distinguish prostate cancer subtypes and improve treatment efficacy with designed personalized therapy.  相似文献   
157.
The structural and functional interaction between D2 dopamine receptor (DR) and A2A adenosine receptor (AR) has suggested these two receptors as a pharmacological target in pathologies associated with dopamine dysfunction, such as Parkinson's disease. In transfected cell lines it has been demonstrated the activation of D2DR induces a significant negative regulation of A2AAR-mediated responses, whereas few data are at now available about the regulation of A2AAR by D2DR agonists at receptor recognition site. In this work we confirmed that in A2AAR/D2DR co-transfected cells, these receptors exist as homo- and hetero-dimers. The classical D2DR agonists were able to negatively modulate both A2AAR affinity and functionality. These effects occurred even if any significant changes in A2AAR/D2DR energy transfer interaction could be detected in BRET experiments.Since the development of new molecules able to target A2A/D2 dimers may represent an attractive tool for innovative pharmacological therapy, we also identified a new small molecule, 3-(3,4-dimethylphenyl)-1-(2-piperidin-1-yl)ethyl)piperidine (compound 1), full agonist of D2DR and modulator of A2A-D2 receptor dimer. This compound was able to negatively modulate A2AAR binding properties and functional responsiveness in a manner comparable to classical D2R agonists. In contrast to classical agonists, compound 1 led to conformational changes in the quaternary structure in D2DR homomers and heteromers and induced A2AAR/D2DR co-internalization. These results suggest that compound 1 exerts a high control of the function of heteromers and could represent a starting point for the development of new drugs targeting A2AAR/D2 DR heteromers.  相似文献   
158.
159.
Multiple molecular dynamics simulations with explicit solvent at room temperature and at 400 K were carried out to characterize designed ankyrin repeat (AR) proteins with full-consensus repeats. Using proteins with one to five repeats, the stability of the native structure was found to increase with the number of repeats. The C-terminal capping repeat, originating from the natural guanine-adenine-binding protein, was observed to denature first in almost all high-temperature simulations. Notably, a stable intermediate is found in experimental equilibrium unfolding studies of one of the simulated consensus proteins. On the basis of simulation results, this intermediate is interpreted to represent a conformation with a denatured C-terminal repeat. To validate this interpretation, constructs without C-terminal capping repeat were prepared and did not show this intermediate in equilibrium unfolding experiments. Conversely, the capping repeats were found to be essential for efficient folding in the cell and for avoiding aggregation, presumably because of their highly charged surface. To design a capping repeat conferring similar solubility properties yet even higher stability, eight point mutations adapting the C-cap to the consensus AR and adding a three-residue extension at the C-terminus were predicted in silico and validated experimentally. The in vitro full-consensus proteins were also compared with a previously published designed AR protein, E3_5, whose internal repeats show 80% identity in primary sequence. A detailed analysis of the simulations suggests that networks of salt bridges between β-hairpins, as well as additional interrepeat hydrogen bonds, contribute to the extraordinary stability of the full consensus.  相似文献   
160.
Full-consensus designed ankyrin repeat proteins were designed with one to six identical repeats flanked by capping repeats. These proteins express well in Escherichia coli as soluble monomers. Compared to our previously described designed ankyrin repeat protein library, randomized positions have now been fixed according to sequence statistics and structural considerations. Their stability increases with length and is even higher than that of library members, and those with more than three internal repeats are resistant to denaturation by boiling or guanidine hydrochloride. Full denaturation requires their heating in 5 M guanidine hydrochloride. The folding and unfolding kinetics of the proteins with up to three internal repeats were analyzed, as the other proteins could not be denatured. Folding is monophasic, with a rate that is nearly identical for all proteins (∼ 400-800 s− 1), indicating that essentially the same transition state must be crossed, possibly the folding of a single repeat. In contrast, the unfolding rate decreases by a factor of about 104 with increasing repeat number, directly reflecting thermodynamic stability in these extraordinarily slow denaturation rates. The number of unfolding phases also increases with repeat number. We analyzed the folding thermodynamics and kinetics both by classical two-state and three-state cooperative models and by an Ising-like model, where repeats are considered as two-state folding units that can be stabilized by interacting with their folded nearest neighbors. This Ising model globally describes both equilibrium and kinetic data very well and allows for a detailed explanation of the ankyrin repeat protein folding mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号