首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   62篇
  2021年   1篇
  2018年   1篇
  2017年   27篇
  2016年   15篇
  2015年   17篇
  2014年   11篇
  2013年   16篇
  2012年   14篇
  2011年   8篇
排序方式: 共有110条查询结果,搜索用时 281 毫秒
51.
52.
Summary

Photoinactivation of catalase is found to be similar in solution and in human normal skin fibroblasts exposed to ultraviolet B, ultraviolet A and near visible light, and the kinetics of such photoinactivation obey first order processes. The action spectrum, measured for the first time in cells, suggests that catalase photoinactivation in solution and in cells proceeds via similar routes. In both systems, no protective effect was observed with diethyldithiocarbamate, a superoxide dismutase inhibitor, with desferrioxamine, an iron chelator which impedes the production of hydroxyl radical via the Fenton reaction, and with vitamin E which scavenges peroxyl radical to protect against membrane peroxidative process. While the absence of protection by these inhibitors may be anticipated for the photoinactivation of catalase in solution, the lack of effect in cells suggests that reactive oxygen species produced by endogenous photosensitization are not responsible for the enzyme inactivation. Moreover, the already established protective effect of ethanol in solution is also observed in cells, supporting the view that photoinactivation in solution and in cells is due to the same primary events.  相似文献   
53.
54.
55.
Emerging evidence indicates that RUNX3 is a tumor suppressor in breast cancer. RUNX3 is frequently inactivated in human breast cancer cell lines and cancer samples by hemizygous deletion of the Runx3 gene, hypermethylation of the Runx3 promoter, or cytoplasmic sequestration of RUNX3 protein. Inactivation of RUNX3 is associated with the initiation and progression of breast cancer. Female Runx3(+/-) mice spontaneously develop ductal carcinoma, and overexpression of RUNX3 inhibits the proliferation, tumorigenic potential, and invasiveness of breast cancer cells. This review is intended to summarize these findings and discuss the tumor suppressor function of RUNX3 in breast cancer.  相似文献   
56.
Both estrogen and leptin play an important role in the regulation of physiological processes of endochondral bone formation in linear growth. Estrogen receptors (ERα and ERβ) are known as members of the superfamily of nuclear steroid hormone receptors and are detected in all zones of growth plate chondrocytes. They can be regulated in a ligand-independent manner. Whether leptin regulates ERs in the growth plate is still not clear. To explore this issue, chondrogenic ATDC5 cells were used in the present study. Messenger RNA and protein analyses were performed by quantitative PCR and Western blotting. We found that both ERα and ERβ were dynamically expressed during the ATDC5 cell differentiation for 21 days. Leptin (50 ng/ml) significantly upregulated ERα and ERβ mRNA and protein levels 48 h after leptin stimulation (P<0.05) at day 14. The up-regulation of ERα and ERβ mRNA by leptin was shown in a dose-dependent manner, but the most effective dose of leptin was different (100 and 1,000 ng/ml, respectively). Furthermore, we confirmed that leptin augmented the phosphorylation of ERK1/2 in a time-dependent manner. A maximum eightfold change was observed at 15 min. Finally, a specific ERK1/2 inhibitor, UO126, blocked leptin-induced ERs regulation in ATDC5 cells, indicating that ERK1/2 mediates, partly, the effects of leptin on ERs. These data demonstrate, for the first time, that leptin regulates the expression of ERs in growth plate chondrocytes via ERK signaling pathway, thereby suggesting a crosstalk between leptin and estrogen receptors in the regulation of bone formation.  相似文献   
57.
Heterotopic ossification (HO) is a disabling condition associated with neurologic injury, inflammation, and overactive bone morphogenetic protein (BMP) signaling. The inductive factors involved in lesion formation are unknown. We found that the expression of the neuro-inflammatory factor Substance P (SP) is dramatically increased in early lesional tissue in patients who have either fibrodysplasia ossificans progressiva (FOP) or acquired HO, and in three independent mouse models of HO. In Nse-BMP4, a mouse model of HO, robust HO forms in response to tissue injury; however, null mutations of the preprotachykinin (PPT) gene encoding SP prevent HO. Importantly, ablation of SP(+) sensory neurons, treatment with an antagonist of SP receptor NK1r, deletion of NK1r gene, or genetic down-regulation of NK1r-expressing mast cells also profoundly inhibit injury-induced HO. These observations establish a potent neuro-inflammatory induction and amplification circuit for BMP-dependent HO lesion formation, and identify novel molecular targets for prevention of HO.  相似文献   
58.
Recently, we discovered oxytocin receptor (OTR) expression in the developing gut villus epithelium that emerges in villus-crypt junctions after weaning. Oxytocin (OT) and OTR regulate many physiological functions in various tissues; however, their function in gut epithelium is unknown. We explored responses of PI3K and Akt phosphoisoforms to OT stimuli in the Caco2BB human gut cell line. In Caco2BB cells, PI3K and pAkt levels peaked at 62.5 nM OT. At higher concentrations, PI3K decreased more gradually than pAkt(S473) suggesting that the pAkt(S473) response is separate from PI3K. At ≤7.8 nM OT, pAkt(T308) increased while pAkt(S473) decreased. Using a specific OTR antagonist, we demonstrated that responses of pAkt(T308) to OT depend on OTR in contrast to the partial OTR-dependence of the pAkt(S473) response. Differential pAkt phosphoisoform responses included pAkt phosphoserine 473 persistently free of phosphothreonine 308. The reduction in PI3K after 62.5 nM OT for 30 min coincided with OTR internalization. The PI3K/Akt activation profile was somewhat different in other cell lines (MCF-7 breast cancer cells, HT29 gut cells), which have PI3K activating mutations, that were examined to establish experimental parameters. In Caco2BB cells, the divergent effects of OT upon pAkt phosphoisoforms suggests separate sub-pathways; pAkt (T308) activation depends on OTR via the PI3K pathway and pAkt(S473) presumably results from its specific kinase mTORC2 (mammalian target of rapamycin complex 2). Thus, OT may modulate gut cell functions downstream of mTOR complexes (e.g., translation control as suggested by others in uterine cells). We will next explore OT-stimulated kinase activities downstream of mTOR related to pAkt phosphoisoforms.  相似文献   
59.
The Arabidopsis membrane protein ACCELERATED CELL DEATH 6 (ACD6) and the defense signal salicylic acid (SA) are part of a positive feedback loop that regulates the levels of at least 2 pathogen-associated molecular patterns (PAMP) receptors, including FLAGELLIN SENSING 2 (FLS2) and CHITIN ELICITOR RECEPTOR (LYSM domain receptor-like kinase 1, CERK1). ACD6- and SA-mediated regulation of these receptors results in potentiation of responses to FLS2 and CERK1 ligands (e.g. flg22 and chitin, respectively). ACD6, FLS2 and CERK1 are also important for callose induction in response to an SA agonist even in the absence of PAMPs. Here, we report that another receptor, EF-Tu RECEPTOR (EFR) is also part of the ACD6/SA signaling network, similar to FLS2 and CERK1.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号