首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   882篇
  免费   56篇
  国内免费   6篇
  944篇
  2024年   5篇
  2023年   19篇
  2022年   29篇
  2021年   46篇
  2020年   50篇
  2019年   69篇
  2018年   70篇
  2017年   33篇
  2016年   33篇
  2015年   52篇
  2014年   90篇
  2013年   89篇
  2012年   67篇
  2011年   110篇
  2010年   63篇
  2009年   28篇
  2008年   33篇
  2007年   24篇
  2006年   18篇
  2005年   6篇
  2004年   9篇
  2002年   1篇
排序方式: 共有944条查询结果,搜索用时 15 毫秒
61.
Adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a key role in maintaining cellular metabolism. AMP or adenosine diphosphate (ADP) levels rise during metabolic stress, such as during nutrient starvation, hypoxia and muscle contraction, and bind to AMPK to induce activity. Recently, activation of AMPK has been considered an attractive therapeutic strategy in the field of human oncology. Structural optimization of lead compound 2, a new type of AMPK activator with potent AMPK activation activity and attractive selective growth inhibition against human cancer cells, improved aqueous solubility, metabolic stability and animal pharmacokinetics (PK) and culminated in the identification of (5-{1-[(6-methoxypyridin-3-yl)methyl]piperidin-4-yl}-1H-benzimidazol-2-yl)(4-{[4-(trifluoromethyl)phenyl]methyl}piperazin-1-yl)methanone ditosylate, ASP4132 (28). Studies on ASP4132 had advanced to clinical trials for the treatment of cancer.  相似文献   
62.
Recent studies have shown that tumour necrosis factor‐α–induced protein 8 like‐1(TIPE1) plays distinct roles in different cancers. TIPE1 inhibits tumour proliferation and metastasis in a variety of tumours but acts as an oncogene in cervical cancer. The role of TIPE1 in nasopharyngeal carcinoma (NPC) remains unknown. Interestingly, TIPE1 expression was remarkably increased in NPC tissue samples compared to adjacent normal nasopharyngeal epithelial tissue samples in our study. TIPE1 expression was positively correlated with that of the proliferation marker Ki67 and negatively correlated with patient lifespan. In vitro, TIPE1 inhibited autophagy and induced cell proliferation in TIPE1‐overexpressing CNE‐1 and CNE‐2Z cells. In addition, knocking down TIPE1 expression promoted autophagy and decreased proliferation, whereas overexpressing TIPE1 increased the levels of pmTOR, pS6 and P62 and decreased the level of pAMPK and the LC3B. Furthermore, the decrease in autophagy was remarkably rescued in TIPE1‐overexpressing CNE‐1 and CNE‐2Z cells treated with the AMPK activator AICAR. In addition, TIPE1 promoted tumour growth in BALB/c nude mice. Taken together, results indicate that TIPE1 promotes NPC progression by inhibiting autophagy and inducing cell proliferation via the AMPK/mTOR signalling pathway. Thus, TIPE1 could potentially be used as a valuable diagnostic and prognostic biomarker for NPC.  相似文献   
63.
64.
Hepatocellular carcinoma (HCC) is the most common liver cancer and the third-leading cause of cancer death worldwide. Nilotinib is an orally available receptor tyrosine kinase inhibitor approved for chronic myelogenous leukemia. This study investigated the effect of nilotinib on HCC. Nilotinib did not induce cellular apoptosis. Instead, staining with acridine orange and microtubule-associated protein 1 light chain 3 revealed that nilotinib induced autophagy in a dose- and time-dependent manner in HCC cell lines, including PLC5, Huh-7, and Hep3B. Moreover, nilotinib up-regulated the phosphryaltion of AMP-activated kinase (AMPK) and protein phosphatase PP2A inactivation were detected after nilotinib treatment. Up-regulating PP2A activity suppressed nilotinib-induced AMPK phosphorylation and autophagy, suggesting that PP2A mediates the effect of nilotinib on AMPK phosphorylation and autophagy. Our data indicate that nilotinib-induced AMPK activation is mediated by PP2A, and AMPK activation and subsequent autophagy might be a major mechanism of action of nilotinib. Growth of PLC5 tumor xenografts in BALB/c nude mice was inhibited by daily oral treatment with nilotinib. Western blot analysis showed both increased phospho-AMPK expression and decreased PP2A activity in vivo. Together, our results reveal that nilotinib induces autophagy, but not apoptosis in HCC, and that the autophagy-inducing activity is associated with PP2A-regulated AMPK phosphorylation.  相似文献   
65.
The mobilization of metabolic energy from adipocytes depends on a tightly regulated balance between hydrolysis and resynthesis of triacylglycerides (TAGs). Hydrolysis is stimulated by β‐adrenergic signalling to PKA that mediates phosphorylation of lipolytic enzymes, including hormone‐sensitive lipase (HSL). TAG resynthesis is associated with high‐energy consumption, which when inordinate, leads to increased AMPK activity that acts to restrain hydrolysis of TAGs by inhibiting PKA‐mediated activation of HSL. Here, we report that in primary mouse adipocytes, PKA associates with and phosphorylates AMPKα1 at Ser‐173 to impede threonine (Thr‐172) phosphorylation and thus activation of AMPKα1 by LKB1 in response to lipolytic signals. Activation of AMPKα1 by LKB1 is also blocked by PKA‐mediated phosphorylation of AMPKα1 in vitro. Functional analysis of an AMPKα1 species carrying a non‐phosphorylatable mutation at Ser‐173 revealed a critical function of this phosphorylation for efficient release of free fatty acids and glycerol in response to PKA‐activating signals. These results suggest a new mechanism of negative regulation of AMPK activity by PKA that is important for converting a lipolytic signal into an effective lipolytic response.  相似文献   
66.
AMP-activated protein kinase (AMPK) is a alphabetagamma heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the alpha subunit and by AMP allosteric control previously thought to be mediated by both alpha and gamma subunits. Here we present evidence that adjacent gamma subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP. The AMP binding site of the gamma(1) CBS1/CBS2 pair, modeled on the structures of the CBS sequences present in the inosine monophosphate dehydrogenase crystal structure, contains three arginine residues 70, 152, and 171 and His151. The yeast gamma homolog, snf4 contains a His151Gly substitution, and when this is introduced into gamma(1), AMP allosteric control is substantially lost and explains why the yeast snf1p/snf4p complex is insensitive to AMP. Arg70 in gamma(1) corresponds to the site of mutation in human gamma(2) and pig gamma(3) genes previously identified to cause an unusual cardiac phenotype and glycogen storage disease, respectively. Mutation of any of AMP binding site Arg residues to Gln substantially abolishes AMP allosteric control in expressed AMPK holoenzyme. The Arg/Gln mutations also suppress the previously described inhibitory properties of ATP and render the enzyme constitutively active. We propose that ATP acts as an intrasteric inhibitor by bridging the alpha and gamma subunits and that AMP functions to derepress AMPK activity.  相似文献   
67.
68.
Activation of 5′-AMP-activated protein kinase (AMPK) is believed to be the mechanism by which the pharmaceuticals, metformin and phenformin, exert their beneficial effects for treatment of type 2 diabetes. These biguanide drugs elevate 5′-AMP, which allosterically activates AMPK and promotes phosphorylation on Thr172 of AMPK catalytic α subunits. Although kinases phosphorylating this site have been identified, phosphatases that dephosphorylate it are unknown. The aim of this study is to identify protein phosphatase(s) that dephosphorylate AMPKα-Thr172 within cells. Our initial data indicated that members of the protein phosphatase ce:sup>/ce:sup>/Mn2+-dependent (PPM) family and not those of the PPP family of protein serine/threonine phosphatases may be directly or indirectly inhibited by phenformin. Using antibodies raised to individual Ppm phosphatases that facilitated the assessment of their activities, phenformin stimulation of cells was found to decrease the ce:sup>/ce:sup>/Mn2+-dependent protein serine/threonine phosphatase activity of Ppm1E and Ppm1F, but not that attributable to other PPM family members, including Ppm1A/PP2Cα. Depletion of Ppm1E, but not Ppm1A, using lentiviral-mediated stable gene silencing, increased AMPKα-Thr172 phosphorylation approximately three fold in HEK293 cells. In addition, incubation of cells with low concentrations of phenformin and depletion of Ppm1E increased AMPK phosphorylation synergistically. Ppm1E and the closely related Ppm1F interact weakly with AMPK and assays with lysates of cells stably depleted of Ppm1F suggests that this phosphatase contributes to dephosphorylation of AMPK. The data indicate that Ppm1E and probably PpM1F are in cellulo AMPK phosphatases and that Ppm1E is a potential anti-diabetic drug target.  相似文献   
69.
By monitoring the fragmentation of a GST-BHMT (a protein fusion of glutathionine S-transferase N-terminal to betaine-homocysteine S-methyltransferase) reporter in lysosomes, the GST-BHMT assay has previously been established as an endpoint, cargo-based assay for starvation-induced autophagy that is largely nonselective. Here, we demonstrate that under nutrient-rich conditions, proteasome inhibition by either pharmaceutical or genetic manipulations induces similar autophagy-dependent GST-BHMT processing. However, mechanistically this proteasome inhibition-induced autophagy is different from that induced by starvation as it does not rely on regulation by MTOR (mechanistic target of rapamycin [serine/threonine kinase]) and PRKAA/AMPK (protein kinase, AMP-activated, α catalytic subunit), the upstream central sensors of cellular nutrition and energy status, but requires the presence of the cargo receptors SQSTM1/p62 (sequestosome 1) and NBR1 (neighbor of BRCA1 gene 1) that are normally involved in the selective autophagy pathway. Further, it depends on ER (endoplasmic reticulum) stress signaling, in particular ERN1/IRE1 (endoplasmic reticulum to nucleus signaling 1) and its main downstream effector MAPK8/JNK1 (mitogen-activated protein kinase 8), but not XBP1 (X-box binding protein 1), by regulating the phosphorylation-dependent disassociation of BCL2 (B-cell CLL/lymphoma 2) from BECN1 (Beclin 1, autophagy related). Moreover, the multimerization domain of GST-BHMT is required for its processing in response to proteasome inhibition, in contrast to its dispensable role in starvation-induced processing. Together, these findings support a model in which under nutrient-rich conditions, proteasome inactivation induces autophagy-dependent processing of the GST-BHMT reporter through a distinct mechanism that bears notable similarity with the yeast Cvt (cytoplasm-to-vacuole targeting) pathway, and suggest the GST-BHMT reporter might be employed as a convenient assay to study selective macroautophagy in mammalian cells.  相似文献   
70.
In this study, we explored the cytoprotective potential of silibinin against oxygen–glucose deprivation (OGD)-induced neuronal cell damages, and studied underling mechanisms. In vitro model of ischemic stroke was created by keeping neuronal cells (SH-SY5Y cells and primary mouse cortical neurons) in an OGD condition followed by re-oxygenation. Pre-treatment of silibinin significantly inhibited OGD/re-oxygenation-induced necrosis and apoptosis of neuronal cells. OGD/re-oxygenation-induced reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) reduction were also inhibited by silibinin. At the molecular level, silibinin treatment in SH-SY5Y cells and primary cortical neurons led to significant AMP-activated protein kinase (AMPK) signaling activation, detected by phosphorylations of AMPKα1, its upstream kinase liver kinase B1 (LKB1) and the downstream target acetyl-CoA Carboxylase (ACC). Pharmacological inhibition or genetic depletion of AMPK alleviated the neuroprotective ability of silibinin against OGD/re-oxygenation. Further, ROS scavenging ability by silibinin was abolished with AMPK inhibition or silencing. While A-769662, the AMPK activator, mimicked silibinin actions and suppressed ROS production and neuronal cell death following OGD/re-oxygenation. Together, these results show that silibinin-mediated neuroprotection requires activation of AMPK signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号