首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71428篇
  免费   5067篇
  国内免费   3243篇
  79738篇
  2024年   168篇
  2023年   1118篇
  2022年   1827篇
  2021年   2348篇
  2020年   2196篇
  2019年   2472篇
  2018年   2465篇
  2017年   1770篇
  2016年   1756篇
  2015年   2256篇
  2014年   4257篇
  2013年   5302篇
  2012年   3190篇
  2011年   4316篇
  2010年   3311篇
  2009年   3683篇
  2008年   3757篇
  2007年   3823篇
  2006年   3401篇
  2005年   3041篇
  2004年   2701篇
  2003年   2273篇
  2002年   2027篇
  2001年   1395篇
  2000年   1179篇
  1999年   1220篇
  1998年   1122篇
  1997年   979篇
  1996年   923篇
  1995年   846篇
  1994年   768篇
  1993年   708篇
  1992年   611篇
  1991年   574篇
  1990年   446篇
  1989年   411篇
  1988年   375篇
  1987年   353篇
  1986年   315篇
  1985年   435篇
  1984年   620篇
  1983年   477篇
  1982年   517篇
  1981年   360篇
  1980年   361篇
  1979年   301篇
  1978年   221篇
  1977年   172篇
  1976年   143篇
  1975年   131篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
β-Adrenergic agonists (β-agonists) are illegally used in animal husbandry, threatening the health of consumers. To realize multianalyte detection of β-agonists, a β2-adrenergic receptor (β2-AR) was cloned from Syrian hamster lung and heterogeneously expressed by Spodoptera frugiperda (Sf9) cells. The recombinant β2-AR was purified from intracellular soluble proteins of infected Sf9 cells, and was utilized to establish an enzyme-linked-receptor assay (ELRA) to detect a group of β-agonists simultaneously. This assay was based on direct competitive inhibition of binding of horseradish peroxidase-labeled ractopamine to the immobilized β2-AR proteins by β-agonists. The IC50 and limit of detection values for ractopamine were 30.38 μg L−1 and 5.20 μg L−1, respectively. Clenbuterol and salbutamol showed 87.7% and 58.5% cross-reactivities with ractopamine, respectively. This assay is simple, rapid, and environmentally friendly, showing a potential application in the screening of β-agonists in animal feeds.  相似文献   
992.
Nucleobase ascorbate transporters (NATs), also known as Nucleobase:Cation-Symporter 2 (NCS2) proteins, belong to an evolutionary widespread family of transport proteins with members in nearly all domains of life. We present the biochemical characterization of two NAT proteins, NAT3 and NAT12 from Arabidopsis thaliana after their heterologous expression in Escherichia coli UraA knockout mutants. Both proteins were shown to transport adenine, guanine and uracil with high affinities. The apparent KM values were determined with 10.12 μM, 4.85 μM and 19.95 μM, respectively for NAT3 and 1.74 μM, 2.44 μM and 29.83 μM, respectively for NAT12. Competition studies with the three substrates suggest hypoxanthine as a further substrate of both transporters. Furthermore, the transport of nucleobases was markedly inhibited by low concentrations of a proton uncoupler indicating that NAT3 and NAT12 act as proton–nucleobase symporters. Transient expression studies of NAT-GFP fusion constructs revealed a localization of both proteins in the plasma membrane. Based on the structural information of the uracil permease UraA from E. coli, a three-dimensional experimentally validated homology model of NAT12 was created. The NAT12 structural model is composed of 14 TM segments and divided into two inverted repeats of TM1–7 and TM8–14. Docking studies and mutational analyses identified residues involved in NAT12 nucleobase binding including Ser-247, Phe-248, Asp-461, Thr-507 and Thr-508. This is the first study to provide insight into the structure–function of plant NAT proteins, which reveals differences from the other members of the NCS2 protein family.  相似文献   
993.
To develop new anticancer agents has been considered as a useful and necessary strategy to suppress highly-metastatic lung cancer, the leading cause of cancer-related deaths in the world. In this study, we synthesized a new compound ethyl 6-bromocoumarin-3-carboxylyl L-theanine (TBrC) and studied the anticancer activity of TBrC and its molecular mechanisms of action. Our results show that TBrC remarkably inhibits the proliferation and migration in highly-metastatic lung cancer cells by inducing apoptosis and cell cycle arrest as well as regulating related protein expressions. Further study indicated that TBrC not only enhances the protein levels of Bax, cytosolic cytochrome c, caspase-3 and PARP-1 but also reduces the protein expressions of Bcl-2, cyclin D1, VEGFR1 and NF-κB as well as inhibits the phosphorylation and expressions of VEGFR2 and Akt in the cancer cells. More importantly, TBrC displays strong suppression of highly-metastatic tumor growth and reduces the tumor weight by 61.6 % in tumor-bearing mice without toxicity to the mice. Our results suggest that TBrC suppresses the proliferation and migration of lung cancer cells via VEGFR-Akt-NF-κB signaling pathways; TBrC may have a wide therapeutic and/or adjuvant therapeutic application in the treatment of lung cancer.  相似文献   
994.
MHC Ⅰ类链相关分子(MICA)是自然杀伤细胞和T 细胞上NKG2D 受体的主要活化性配体,在上皮源性肿瘤细胞表面过表达。NKG2D 与MICA 的结合可有效刺激效应细胞对肿瘤细胞的细胞毒作用。然而,临床观察表明,MICA 会在肿瘤的增殖过程中脱落而形成可溶性MICA(sMICA),这被认为是肿瘤细胞逃脱NKG2D 介导的免疫监视的重要原因。综述在肿瘤细胞中MICA 和NKG2D 的表达与功能、sMICA 的形成与肿瘤免疫逃逸的关联以及介导MICA 脱落的机制,由此探讨肿瘤免疫治疗的新靶点和新策略。  相似文献   
995.
A non-specific nucleoside hydrolase from Escherichia coli (RihC) has been cloned, overexpressed, and purified to greater than 95% homogeneity. Size exclusion chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis show that the protein exists as a homodimer. The enzyme showed significant activity against the standard ribonucleosides with uridine, xanthosine, and inosine having the greatest activity. The Michaelis constants were relatively constant for uridine, cytidine, inosine, adenosine, xanthosine, and ribothymidine at approximately 480 μM. No activity was exhibited against 2′-OH and 3′-OH deoxynucleosides. Nucleosides in which additional groups have been added to the exocyclic N6 amino group also exhibited no activity. Nucleosides lacking the 5′-OH group or with the 2′-OH group in the arabino configuration exhibited greatly reduced activity. Purine nucleosides and pyrimidine nucleosides in which the N7 or N3 nitrogens respectively were replaced with carbon also had no activity.  相似文献   
996.
Genetic variation in SLC12A5 which encodes KCC2, the neuron-specific cation-chloride cotransporter that is essential for hyperpolarizing GABAergic signaling and formation of cortical dendritic spines, has not been reported in human disease. Screening of SLC12A5 revealed a co-segregating variant (KCC2-R952H) in an Australian family with febrile seizures. We show that KCC2-R952H reduces neuronal Cl extrusion and has a compromised ability to induce dendritic spines in vivo and in vitro. Biochemical analyses indicate a reduced surface expression of KCC2-R952H which likely contributes to the functional deficits. Our data suggest that KCC2-R952H is a bona fide susceptibility variant for febrile seizures.  相似文献   
997.
Fed‐batch synthesis of galacto‐oligosaccharides (GOS) from lactose with β‐galactosidase from Aspergillus oryzae was evaluated experimentally and reaction yield was maximized via optimal control technique. The optimal lactose and enzyme feed flow rate profiles were determined using a model for GOS synthesis previously reported by the authors. Experimentally it was found that fed‐batch synthesis allowed an increase on the maximum total GOS concentration from 115 (batch synthesis) to 218 g L?1 as consequence of the increase in total sugars concentration from 40 to 58% w/w. Such high concentration of total sugars was not attainable in batch operation because of the low solubility of lactose at the reaction temperature (40°C). Simulations predicted a GOS yield of 32.5 g g?1 in fed‐batch synthesis under optimal conditions, while experimentally the same yield as in batch synthesis was obtained (28 g g?1). Besides, an enrichment of total oligosaccharides in GOS with a high polymerization degree (GOS‐5 and GOS‐6) was observed in the fed‐batch synthesis. Experimental profiles for all sugars were similar to the ones predicted by simulation, which supports the use of this methodology for the optimization of GOS synthesis. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:59–67, 2014  相似文献   
998.
999.
The nest is a protein motif of three consecutive amino acid residues with dihedral angles 1,2‐αRαL (RL nests) or 1,2‐αLαR (LR nests). Many nests form a depression in which an anion or δ‐negative acceptor atom is bound by hydrogen bonds from the main chain NH groups. We have determined the extent and nature of this bridging in a database of protein structures using a computer program written for the purpose. Acceptor anions are bound by a pair of bridging hydrogen bonds in 40% of RL nests and 20% of LR nests. Two thirds of the bridges are between the NH groups at Positions 1 and 3 of the motif (N1N3‐bridging)—which confers a concavity to the nest; one third are of the N2N3 type—which does not. In bridged LR nests N2N3‐bridging predominates (14% N1N3: 75% N2N3), whereas in bridged RL nests the reverse is true (69% N1N3: 25% N2N3). Most bridged nests occur within larger motifs: 45% in (hexapeptide) Schellman loops with an additional 4 → 0 hydrogen bond (N1N3), 11% in Schellman loops with an additional 5 → 1 hydrogen bond (N2N3), 12% in a composite structure including a type 1β‐bulge loop and an asx‐ or ST‐ motif (N1N3)—remarkably homologous to the N1N3‐bridged Schellman loop—and 3% in a composite structure including a type 2β‐bulge loop and an asx‐motif (N2N3). A third hydrogen bond is a previously unrecognized feature of Schellman loops as those lacking bridged nests have an additional 4 → 0 hydrogen bond. Proteins 2014; 82:3023–3031. © 2014 Wiley Periodicals, Inc.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号