首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6749篇
  免费   314篇
  国内免费   278篇
  7341篇
  2024年   11篇
  2023年   79篇
  2022年   153篇
  2021年   160篇
  2020年   222篇
  2019年   318篇
  2018年   318篇
  2017年   206篇
  2016年   210篇
  2015年   180篇
  2014年   437篇
  2013年   678篇
  2012年   203篇
  2011年   419篇
  2010年   231篇
  2009年   290篇
  2008年   296篇
  2007年   316篇
  2006年   267篇
  2005年   273篇
  2004年   244篇
  2003年   219篇
  2002年   188篇
  2001年   112篇
  2000年   85篇
  1999年   92篇
  1998年   84篇
  1997年   103篇
  1996年   109篇
  1995年   82篇
  1994年   62篇
  1993年   70篇
  1992年   62篇
  1991年   52篇
  1990年   29篇
  1989年   42篇
  1988年   25篇
  1987年   34篇
  1986年   29篇
  1985年   31篇
  1984年   70篇
  1983年   41篇
  1982年   51篇
  1981年   31篇
  1980年   31篇
  1979年   31篇
  1978年   11篇
  1977年   17篇
  1976年   12篇
  1974年   14篇
排序方式: 共有7341条查询结果,搜索用时 15 毫秒
961.
The high resolution crystal structure of 5-(2-thienylacetamido)-1,3,4-thiadiazole-2-sulfonamide complexed to human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoform hCA II is reported. The compound binds in a similar manner with acetazolamide when the sulfamoyl–thiadiazolyl–acetamido fragment of the two compounds is considered, but the thienyl tail was positioned in the subpocket 2, rarely observed by other investigated CA inhibitors. This positioning allows interaction with amino acid residues (such as Asn67, Ile91, Gln92 and Val121 which are variable in other isoforms of medicinal chemistry interest, such as hCA I, IX and XII. Indeed, the investigated sulfonamide was a medium potency hCA I and II inhibitor but was highly effective as a hCA IX and XII inhibitor. This different behavior with respect to acetazolamide (a promiscuous inhibitor of all these isoforms) has been explained by resolving the crystal structure, and may be used to design more isoform-selective compounds.  相似文献   
962.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
963.
Akt kinases are attractive targets for small molecule drug discovery because of their key role in tumor cell survival/proliferation and their overexpression/activation in many human cancers. Recent efforts in the development and biological evaluation of small molecule inhibitors of Akt have led to the identification of novel Akt kinase inhibitors, based on a quinoxaline or pyrazinone scaffold. A series of new substituted pyrrolo[1,2-a]quinoxaline derivatives, structural analogues of these active quinoxaline or pyrazinone pharmacophores, was synthesized from various substituted 2-nitroanilines or 1,2-phenylenediamine via multistep heterocyclization process. These new compounds were tested for their in vitro ability to inhibit the proliferation of the human leukemic cell lines K562, U937 and HL60, and the breast cancer cell line MCF7. Three of these human cell lines (K562, U937 and MCF7) exhibited an active phosphorylated Akt form. The most promising active pyrroloquinoxalines were found to be 1a that inhibited K562 cell line proliferation with an IC50 of 4.5 μM, and 1h that inhibited U937 and MCF7 cell lines with IC50 of 5 and 8 μM, respectively. These two candidates exhibited more potent activities than the reference inhibitor A6730.  相似文献   
964.
Rho激酶,又称Rho相关的卷曲蛋白激酶,是一类丝氨酸/苏氨酸蛋白激酶,被发现为小G蛋白Rho的下游作用底物。由于Rho激酶活性涉及神经细胞的功能,而且越来越多的研究表明抑制Rho激酶的活性在数种神经退行性疾病包括帕金森病、阿尔茨海默病、亨廷顿病、多发性硬化症,和肌萎缩性侧索硬化症等的实验模式中都有明显的效果。因此,Rho激酶已成为针对治疗神经性退化性疾病的一个热门标靶蛋白。本文探讨Rho激酶抑制剂在神经退化性疾病上的应用及发展,使神经退行性疾病能进一步提升治疗和在应用上的水平。  相似文献   
965.
Targeting the interaction between G-Protein Coupled Receptor, CXCR4, and its natural ligand CXCL12 is a leading strategy to mitigate cancer metastasis and reduce inflammation. Several pyridine-based compounds modeled after known small molecule CXCR4 antagonists, AMD3100 and WZ811, were synthesized. Nine hit compounds were identified. These compounds showed lower binding concentrations than AMD3100 (1000 nM) and six of the nine compounds had an effective concentration (EC) less than or equal to WZ811 (10 nM). Two of the hit compounds (2g and 2w) inhibited invasion of metastatic cells at a higher rate than AMD3100 (62%). Compounds 2g and 2w also inhibit inflammation in the same range as WZ811 in the paw edema test at 40% reduction in inflammation. These preliminary results are the promising foundation of a new class of pyridine-based CXCR4 antagonists.  相似文献   
966.
The leafless amphibious sedge Eleocharis vivipara develops culms with C4 traits and Kranz anatomy under terrestrial conditions, but develops culms with C3 traits and non-Kranz anatomy under submerged conditions. The culms of the terrestrial form have high C4 enzyme activities, while those of the submerged form have decreased C4 enzyme activities. The culms accumulate ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the mesophyll cells (MC) and the bundle sheath cells. The Rubisco in the MC may be responsible for the operation of the C3 pathway in the submerged form. To verify the presence of the C3 cycle in the MC, we examined the effects of 3,3-dichloro-2-(dihydroxyphosphinoylmethyl) -propenoate (DCDP), an inhibitor of phosphoenolpyruvate carboxylase (PEPC), on photosynthesis in culms of the terrestrial forms of E. vivipara and related amphibious species, E. baldwinii and E. retroflexa ssp. chaetaria. When 1 mM DCDP was fed via the transpiration stream to excised leaves, photosynthesis was inhibited completely in Fimbristylis dichotoma (C4 control), but by only 20% in potato (C3 control). In the terrestrial Eleocharis plants, the degree of inhibition of photosynthesis by DCDP was intermediate between those of the C4 and C3 plants, at 58–81%. These results suggest that photosynthesis under DCDP treatment in the terrestrial Eleocharis plants is due mainly to fixation of atmospheric CO2 by Rubisco and probably the C3 cycle in the MC. These features are reminiscent of those in C4-like plants. Differential effects of DCDP on photosynthesis of the 3 Eleocharis species are discussed in relation to differences in the degree of Rubisco accumulation and C3 activity in the MC. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
967.
目的建立稳定高表达人核糖核酸酶抑制因子(hRI)的真核细胞系:乳腺癌细胞系,为进一步研究hRI抗肿瘤、抗氧化的作用机制奠定实验基础。方法将hRI通过逆转录病毒载体(pLNCX-hRI)经过病毒包装细胞(PA317)包装后的高滴度病毒上清,感染乳腺癌(MCF-7)细胞系,经G418筛选后,运用RT-PCR、Western blot等方法进行鉴定hRI在MCF-7中的高表达。结果hRI克隆到乳腺癌细胞(MCF-7)基因组,并随着基因组稳定高表达hRI。结论利用逆转录病毒载体感染真核细胞后获得高表达hRI的肿瘤细胞株,从而为进一步研究真核细胞内hRI的抗肿瘤作用机制提供条件。  相似文献   
968.
The mature, functional sieve-tube system in higher plants is dependent upon protein import from the companion cells to maintain a functional long-distance transport system. Soluble proteins present within the sieve-tube lumen were investigated by analysis of sieve-tube exudates which revealed the presence of distinct sets of polypeptides in seven monocotyledonous and dicotyledonous plant species. Antibodies directed against sieve-tube exudate proteins from Ricinus communis L. demonstrated the presence of shared antigens in the phloem sap collected from Triticum aestivum L., Oryza sativa L., Yucca filamentosa L., Cucurbita maxima Duch., Robinia pseudoacacia L. and Tilia platyphyllos L. Specific antibodies were employed to identify major polypeptides. Molecular chaperones related to Rubisco-subunit-binding protein and cyclophilin, as well as ubiquitin and the redox proteins, thioredoxin h and glutaredoxin, were detected in the sieve-tube exudate of all species examined. Actin and profilin, a modulator of actin polymerization, were also present in all analyzed phloem exudates. However, some proteins were highly species-specific, e.g. cystatin, a protease-inhibitor was present in R. communis but was not detected in exudates from other species, and orthologs of the well-known squash phloem lectin, phloem protein 2, were only identified in the sieve-tube exudate of R. communis and R. pseudoacacia. These findings are discussed in terms of the likely roles played by phloem proteins in the maintenance and function of the enucleate sieve-tube system of higher plants. Received: 12 February 1998 / Accepted: 16 March 1998  相似文献   
969.
The cardioprotective properties of quinapril, an angiotensin-converting enzyme inhibitor, were studied in a rat model of dilated cardiomyopathy. Twenty-eight days after immunization of pig cardiac myosin, four groups rats were given 0.2 mg/kg (Q0.2, n = 11), 2 mg/kg (Q2, n = 11) or 20 mg/kg (Q20, n = 11) of quinapril or vehicle (V, n = 15) orally once a day. After 1 month, left ventricular end-diastolic pressure (LVEDP), ±dP/dt, area of myocardial fibrosis, and myocardial mRNA expression of transforming growth factor (TGF)-1, collagen-III and fibronectin were measured. Four of 15 (27%) rats in V and two of 11 (18%) in Q0.2 died. None of the animals in Q2 or Q20 died. The LVEDP was higher and ±dP/dt was lower in V (14.1 ± 2.0 mmHg and +2409 ± 150/–2318 ± 235 mmHg/sec) than in age-matched normal rats (5.0 ± 0.6 mmHg and +6173 ± 191/–7120 ± 74 mmHg/sec; all p < 0.01). After quinapril treatment, LVEDP was decreased and ±dP/dt was increased in a dose-dependent manner (10.8 ± 1.8 mmHg and +3211 ± 307/–2928 ± 390 mmHg/sec in Q0.2, 9.4 ± 1.5 mmHg and +2871 ± 270/–2966 ± 366 mmHg/sec in Q2, and 6.6 ± 1.5 mmHg, and +3569 ± 169/–3960 ± 203 mmHg/sec in Q20). Increased expression levels of TGF-1, collagen-III and fibronectin mRNA in V were reduced in Q20. Quinapril improved survival rate and cardiac function in rats with dilated cardiomyopathy after myocarditis. Furthermore, myocardial fibrosis was regressed and myocardial structure returned to nearly normal in animals treated with quinapril.  相似文献   
970.
The three-dimensional structure of human basic fibroblast growth factor has been refined to a crystallographic residual of 16.1% at 1.6 A resolution. The structure has a Kunitz-type fold and is composed of 12 antiparallel beta-strands, 6 of which form a beta-barrel. One bound sulfate ion has been identified in the model, hydrogen bonded to the side chains of Asn 27, Arg 120, and Lys 125. The side chain of Arg 120 has two conformations, both of which permit hydrogen bonds to the sulfate. This sulfate binding site has been suggested as the binding site for heparin (Eriksson, A.E., Cousens, L.S., Weaver, L.H., & Matthews, B.W., 1991, Proc. Natl. Acad. Sci. USA 88, 3441-3445). Two beta-mercaptoethanol (BME) molecules are also included in the model, each forming a disulfide bond to the S gamma atoms of Cys 69 and Cys 92, respectively. The side chain of Cys 92 has two conformations of which only one can bind BME. Therefore the BME molecule is half occupied at this site. The locations of possible sulfate binding sites on the protein were examined by replacing the ammonium sulfate in the crystallization medium with ammonium selenate. Diffraction data were measured to 2.2 A resolution and the structure refined to an R-factor of 13.8%. The binding of the more electron-dense selenate ion was identified at two positions. One position was identical to the sulfate binding site identified previously. The second selenate binding site, which is of lower occupancy, is situated 5.6 A from the first. This ion is hydrogen bonded by the side chain of Lys 135 and Arg 120. Thus the side chain of Arg 120 binds two selenate ions simultaneously. It is suggested that the observed second selenate binding site should also be considered as a possible binding site for heparin, or that both selenate binding sites might simultaneously contribute to the binding of heparin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号