首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6719篇
  免费   306篇
  国内免费   279篇
  2024年   8篇
  2023年   74篇
  2022年   143篇
  2021年   161篇
  2020年   222篇
  2019年   318篇
  2018年   319篇
  2017年   208篇
  2016年   210篇
  2015年   173篇
  2014年   431篇
  2013年   681篇
  2012年   205篇
  2011年   419篇
  2010年   228篇
  2009年   284篇
  2008年   293篇
  2007年   321篇
  2006年   264篇
  2005年   276篇
  2004年   244篇
  2003年   216篇
  2002年   187篇
  2001年   111篇
  2000年   85篇
  1999年   90篇
  1998年   84篇
  1997年   103篇
  1996年   109篇
  1995年   81篇
  1994年   62篇
  1993年   70篇
  1992年   62篇
  1991年   52篇
  1990年   29篇
  1989年   42篇
  1988年   25篇
  1987年   34篇
  1986年   29篇
  1985年   31篇
  1984年   70篇
  1983年   41篇
  1982年   51篇
  1981年   31篇
  1980年   31篇
  1979年   31篇
  1978年   11篇
  1977年   17篇
  1976年   12篇
  1974年   14篇
排序方式: 共有7304条查询结果,搜索用时 187 毫秒
921.
During the seed development of Nicotiana tabacum, appreciable accumulation of the soluble protein fraction started to occur at around the 6th day after anthesis and finally reached 12% on the basis of dry weight when seed maturation was accomplished. In the soluble fraction of mature seeds, four protein fractions were observed on analytical ultracentrifugation, and the protein having a sedimentation coefficient of 11.7S was the major one. The 11.7S protein was isolated and SDS-polyacrylamide gel electrophoresis indicated that the protein consisted of at least five subunits with molecular weights of 49,000, 31,000, 29,000, 21,000 and 19,000. The 11.7S protein was rich in glutamic acid or glutamine and arginine, and the presence of carbohydrate was confirmed.

During development, all of the five subunits started to appear during the period between the 12th and 15th day after anthesis.  相似文献   
922.
The inhibitory effects of nobiletin and hesperidin from citrus peel crude extracts on tyrosinase diphenolase activity are evaluated. IC50 of nobiletin and hesperidin is 1.49 mM and 16.08 mM, respectively and their inhibition mechanism is competitive type with Ki = 2.82 mM and noncompetitive with Ki = 9.16 mM, respectively. Crude extracts from citrus peel (C. unshiu Marc.) were extracted with 95% ethanol and fractionated by petroleum ether (PCPE). The ethanol phase (ECPE) was further desorbed from macroporous adsorption resin (FGRE). Their IC50 values were 8.09 mg/mL, 7.53 mg/mL and 4.80 mg/mL, respectively. Their inhibition on melanogenesis in B16 mouse melanoma cells was also evaluated. FGRE showed a significant inhibition (42.5% at 31.25 μg/mL, p < 0.01) while hesperidin showed almost no inhibition. Nobiletin and PCPE give efficacious antiproliferation effects on B16 mouse melanoma cell with IC50 values 88.6 μM and 62.96 μg/mL, respectively, by the MTT test. Hesperidin and other crude extracts showed very low cytotoxity to the B16 cell.  相似文献   
923.
A novel series of triazole-based compounds have been designed, synthesised and evaluated as multi-target-directed ligands (MTDLs) against Alzheimer disease (AD). The triazole-based compounds have been designed to target four major AD hallmarks that include Aβ aggregation, metal-induced Aβ aggregation, metal dys-homeostasis and oxidative stress. Among the synthesised compounds, 6n having o-CF3 group on the phenyl ring displayed most potent inhibitory activity (96.89% inhibition, IC50 = 8.065 ± 0.129 μM) against Aβ42 aggregation, compared to the reference compound curcumin (95.14% inhibition, IC50 = 6.385 ± 0.009 μM). Compound 6n disassembled preformed Aβ42 aggregates as effectively as curcumin. Furthermore, 6n displayed metal chelating ability and significantly inhibited Cu2+-induced Aβ42 aggregation and disassembled preformed Cu2+-induced Aβ42 aggregates. 6n successfully controlled the generation of the reactive oxygen species (ROS) by preventing the copper redox cycle. In addition, 6n did not display cytotoxicity and was able to inhibit toxicity induced by Aβ42 aggregates in SH-SY5Y cells. The preferred binding regions and key interactions of 6n with Aβ42 monomer and Aβ42 protofibril structure was evaluated with molecular docking. Compound 6n binds preferably to the C-terminal region of Aβ42 that play a critical role in Aβ42 aggregation. The results of the present study highlight a novel triazole-based compound, 6n, as a promising MTDL against AD.  相似文献   
924.
Xanthenone based hydrazone derivatives (5a–n) have been synthesized as potential α-glucosidase inhibitors. All synthesized compounds (5a–n) are characterized by their FTIR, 1H NMR, 13C NMR and HRMS, and in case of 5g also by X-ray crystallographic technique. The compounds unveiled a varying degree of α-glucosidase inhibitory activity when compared with standard acarbose (IC50 = 375.38 ± 0.12 µM). Amongst the series, compound 5l (IC50 = 62.25 ± 0.11 µM) bearing a trifluoromethyl phenyl group is found to be the most active compound. Molecular modelling is performed to establish the binding pattern of the more active compound 5l, which revealed the significance of substitution pattern. The pharmacological properties of molecules are also calculated by MedChem Designer which determines the ADME (absorption, distribution, metabolism, excretion) properties of molecules. The solid state self-assembly of compound 5g is discussed to show the conformation and role of iminoamide moiety in the molecular packing.  相似文献   
925.
Up to 30% of patients with metastatic castration-resistant prostate cancer (CRPC) patients carry altered DNA damage response genes, enabling the use of poly adenosine diphosphate–ribose polymerase (PARP) inhibitors in advanced CRPC. The proto-oncogene mesenchymal–epithelial transition (MET) is crucial in the migration, proliferation, and invasion of tumour cells. Aberrant expression of MET and its ligand hepatocyte growth factor is associated with drug resistance in cancer therapy. Here, we found that MET was highly expressed in human CRPC tissues and overexpressed in DU145 and PC3 cells in a drug concentration-dependent manner and is closely related to sensitivity to PARP inhibitors. Combining the PARP inhibitor olaparib with the MET inhibitor crizotinib synergistically inhibited CRPC cell growth both in vivo and in vitro. Further analysis of the underlying molecular mechanism underlying the MET suppression-induced drug sensitivity revealed that olaparib and crizotinib could together downregulate the ATM/ATR signaling pathway, inducing apoptosis by inhibiting the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, enhancing the olaparib-induced antitumour effect in DU145 and PC3 cells. In conclusion, we demonstrated that MET inhibition enhances sensitivity of CRPC to PARP inhibitors by suppressing the ATM/ATR and PI3K/AKT pathways and provides a novel, targeted therapy regimen for CRPC.  相似文献   
926.
Several apoplastic enzymes have been implicated in the control of elongation growth of plant cells. Among them, peroxidases contribute to both loosening and stiffening of the cell wall. They appear to be regulated by various mechanisms, including the action of extracellular inhibitors. To obtain evidence of the role of the enzyme–inhibitor interaction during leaf development, the intercellular washing fluids from Helianthus annuus leaves of different ages were isolated using standard methods of vacuum infiltration and centrifugation. Peroxidase activities, assessed using tetramethylbenzidine as substrate, increased during leaf development, reaching a maximum value after the leaves were fully expanded. An inhibitor, chemically characterised as ascorbate, co‐localised with the enzyme in the apoplast. Moreover, there was a strong negative correlation between the action of peroxidase and the micromolar concentration of ascorbate in the apoplastic fluid. The results show that in growing leaves, the in planta ascorbate concentration is able to restrain peroxidase enzyme activity. Then, at the time of growth cessation, the loss of extracellular ascorbate relieves the inhibition on this enzyme that contributes to wall fixation.  相似文献   
927.
Although botulinum neurotoxin serotype A (BoNT/A) is known for its use in cosmetics, it causes a potentially fatal illness, botulism, and can be used as a bioterror weapon. Many compounds have been developed that inhibit the BoNTA zinc-metalloprotease light chain (LC), however, none of these inhibitors have advanced to clinical trials. In this study, a fragment-based approach was implemented to develop novel covalent inhibitors of BoNT/A LC. First, electrophilic fragments were screened against BoNT/A LC, and benzoquinone (BQ) derivatives were found to be active. In kinetic studies, BQ compounds acted as irreversible inhibitors that presumably covalently modify cysteine 165 of BoNT/A LC. Although most BQ derivatives were highly reactive toward glutathione in vitro, a few compounds such as natural product naphthazarin displayed low thiol reactivity and good BoNT/A inhibition. In order to increase the potency of the BQ fragment, computational docking studies were employed to elucidate a scaffold that could bind to sites adjacent to Cys165 while positioning a BQ fragment at Cys165 for covalent modification; 2-amino-N-arylacetamides met these criteria and when linked to BQ displayed at least a 20-fold increase in activity to low μM IC50 values. Unlike BQ alone, the linked-BQ compounds demonstrated only weak irreversible inhibition and therefore acted mainly as non-covalent inhibitors. Further kinetic studies revealed a mutual exclusivity of BQ covalent inactivation and competitive inhibitor binding to sites adjacent to Cys165, refuting the viability of the current strategy for developing more potent irreversible BoNT/A inhibitors. The highlights of this study include the discovery of BQ compounds as irreversible BoNT/A inhibitors and the rational design of low μM IC50 competitive inhibitors that depend on the BQ moiety for activity.  相似文献   
928.
Thermostabilities of component enzymes in the pyruvate dehydrogenase complex from Bacillus stearothermophilus decreased in the order lipoamide dehydrogenase, lipoate acetyltransferase, and pyruvate decarboxylase (E1). Fluorescence of an extrinsic 8-amino-1-naphthalenesulfonate (ANS) increased with inactivation of E1. The thermal denaturation of the enzymes resulted in disassembly of the complex. El was involved in a resulting aggregate of the complex. The interaction between ANS and denatured E1 accounted for an increase in fluorescence.  相似文献   
929.
The homologous Kunitz inhibitor proteins, bovine pancreatic trypsin inhibitor (BPTI) and dendrotoxin I (DTX-I), interact with large conductance Ca2+-activated K+ channels (maxi-KCa) by binding to an intracellular site outside of the pore to produce discrete substate events. In contrast, certain homologues of the Shaker ball peptide produce discrete blocking events by binding within the ion conduction pathway. In this study, we investigated ligand interactions of these positively charged peptide molecules by analysis of single maxi-KCa channels in planar bilayers recorded in the presence of DTX-I and BPTI, or DTX-I and a high-affinity homologue of ball peptide. Both DTX-I (K d, 16.5 nM) and BPTI (K d, 1,490 nM) exhibit one-site binding kinetics when studied alone; however, records in the presence of DTX-I plus BPTI demonstrate simultaneous binding of these two molecules. The affinity of BPTI (net charge, +6) decreases by 11.7-fold (K d, 17,500 nM) when DTX-I (net charge, +10) is bound and, conversely, the affinity of DTX-I decreases by 10.8-fold (K d, 178 nM) when BPTI is bound. The ball peptide homologue (BP; net charge, +6) exhibits high blocking affinity (K d, 7.2 nM) at a single site when studied alone, but has 8.0-fold lower affinity (K d, 57 nM) for blocking the DTX-occupied channel. The affinity of DTX-I likewise decreases by 8.4-fold (K d, 139 nM) when BP is bound. These results identify two types of negatively coupled ligand–ligand interactions at distinct sites on the intracellular surface of maxi-KCa channels. Such antagonistic ligand interactions explain how the binding of BPTI or DTX-I to four potentially available sites on a tetrameric channel protein can exhibit apparent one-site kinetics. We hypothesize that negatively coupled binding equilibria and asymmetric changes in transition state energies for the interaction between DTX-I and BP originate from repulsive electrostatic interactions between positively charged peptide ligands on the channel surface. In contrast, there is no detectable binding interaction between DTX-I on the inside and tetraethylammonium or charybdotoxin on the outside of the maxi-KCa channel.  相似文献   
930.
The plasmepsins are specific aspartic proteases of the malaria parasite and a potential target for developing new antimalarial agents. Our previously reported peptidomimetic plasmepsin inhibitor with modified 2-aminoethylamino substituent, KNI-10740, was tested against chloroquine sensitive Plasmodium falciparum, D6, to be highly potent, however, the inhibitor exhibited about 5 times less activity against multi-drug resistant parasite (TM91C235). We hypothesized the potency reduction resulted from structural similarity between 2-aminoethylamino substituent of KNI-10740 and chloroquine. Then, we modified the moiety and finally identified compound 15d (KNI-10823), that could avoid drug-resistant mechanism of TM91C235 strain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号