首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   5篇
  国内免费   1篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   7篇
  2018年   6篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   8篇
  2013年   12篇
  2012年   9篇
  2011年   13篇
  2010年   4篇
  2009年   2篇
  2008年   5篇
  2007年   8篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
61.
Microglial activation is a significant contributor to the pathogenesis of many neurodegenerative diseases. Microglia respond to a range of stimuli including pathogenic protein deposits such as advanced glycation endproducts (AGEs). AGEs are prominent inflammatory stimuli that accumulate in the ageing brain. AGEs can activate microglia, leading to the production of excessive amounts of inflammatory cytokines and coupling via gap junction proteins especially connexin43 (Cx43). The literature on the expression of microglial Cx43 during inflammation is controversial. Many cellular effects of AGEs are thought to be mediated by the receptor RAGE. There is however, no evidence suggesting Cx43 is a downstream effector of AGEs-RAGE interaction in microglia. In addition, most of the AGEs-related studies have been undertaken using rodent microglia; the information on human microglia is sparse. Microglia of human and rodent origin respond differently to certain stimuli. The aims of this study were to investigate the AGEs-RAGE-mediated activation of human microglia and establish if Cx43 is one of the downstream effectors of AGEs-RAGE interaction in these cells. Human microglial CHME-5 cells were treated with different doses of AGEs for a selected time-period and microglial activation studied using specific markers. The protein expression of RAGE, Cx43 and TNF-α-receptors (RI and RII) was analysed in response to AGEs in the absence/presence of various doses of anti-RAGE Fabs. TNF-α levels in media were measured using ELISA. TNF-α-induced opening of gap junctional channels was assessed by dye uptake assays and the effect of neutralising TNFRII on Cx43 levels was also studied. CHME-5 cells showed an up-regulation of RAGE, TNF-α, TNFRs (especially TNFRII) and Cx43 upon AGEs treatment and a significant dose-dependent drop in the levels of TNF-α, TNFRII and Cx43 in the presence of anti-RAGE Fabs. TNF-α induced gap junctional/hemichannel opening whereas blocking TNFRII inhibited TNF-α-induced increase in Cx43 levels. Results suggested that TNF-α, TNFRII and Cx43 are downstream effectors of the AGEs-RAGE interaction in human microglial CHME-5 cells.  相似文献   
62.
羰基毒害在糖尿病晚期并发症中的作用   总被引:2,自引:0,他引:2  
动物机体组织的氧化紧张损伤和老化交联是糖尿病晚期并发症中神经病变、动脉粥样硬化、风湿性关节炎、肾病变、白内障等老化慢性疾病的共同特征.对氧化紧张到底是糖尿病晚期并发症的初始原因还是糖尿病组织衰变的次级诱因提出了探讨.结果表明糖尿病患者机体和血浆中的糖氧化产物及脂类过氧化物的增多表明病患者体内氧化紧张的加强;然而,它们中的某些产物与氧化紧张并不相关;此外,其它一些氧化紧张的直接指标,如氨基酸的氧化,在糖尿病患者的皮肤胶原中也并没有增多.因此,对于糖尿病患者中蛋白质化学修饰的现象,用活性羰基的毒化超过其系统解毒能力的观点来解释更合适.这种在氧化或非氧化反应中形成的不饱和羰基化合物在体内总是以相对恒定的浓度存在,因而在糖尿病中,由羰基毒害引起组织中糖类和脂类衍生物的增长可以被认为是生物化学动力学的一种必然结果.  相似文献   
63.
The blood-brain barrier (BBB) consists of differentiated cells integrating in one ensemble to control transport processes between the central nervous system (CNS) and peripheral blood. Molecular organization of BBB affects the extracellular content and cell metabolism in the CNS. Developmental aspects of BBB attract much attention in recent years, and barriergenesis is currently recognized as a very important and complex mechanism of CNS development and maturation. Metabolic control of angiogenesis/barriergenesis may be provided by glucose utilization within the neurovascular unit (NVU). The role of glycolysis in the brain has been reconsidered recently, and it is recognized now not only as a process active in hypoxic conditions, but also as a mechanism affecting signal transduction, synaptic activity, and brain development. There is growing evidence that glycolysis-derived metabolites, particularly, lactate, affect barriergenesis and functioning of BBB. In the brain, lactate produced in astrocytes or endothelial cells can be transported to the extracellular space via monocarboxylate transporters (MCTs), and may act on the adjoining cells via specific lactate receptors. Astrocytes are one of the major sources of lactate production in the brain and significantly contribute to the regulation of BBB development and functioning. Active glycolysis in astrocytes is required for effective support of neuronal activity and angiogenesis, while endothelial cells regulate bioavailability of lactate for brain cells adjusting its bidirectional transport through the BBB. In this article, we review the current knowledge with regard to energy production in endothelial and astroglial cells within the NVU. In addition, we describe lactate-driven mechanisms and action of alternative products of glucose metabolism affecting BBB structural and functional integrity in developing and mature brain.  相似文献   
64.
BackgroundThere is growing interest in the development of cell culture assays that enable the rigidity of the extracellular matrix to be increased. A promising approach is based on three-dimensional collagen type I matrices that are stiffened by cross-linking through non-enzymatic glycation with reducing sugars.MethodsThe present study evaluated the biomechanical changes in the non-enzymatically glycated type I collagen matrices, including collagen organization, the advanced glycation end products formation and stiffness achievement. Gels were glycated with ribose at different concentrations (0, 5, 15, 30 and 240 mM). The viability and the phenotypic changes of primary human lung fibroblasts cultured within the non-enzymatically glycated gels were also evaluated along three consecutive weeks. Statistical tests used for data analyze were Mann–Whitney U, Kruskal Wallis, Student’s t-test, two-way ANOVA, multivariate ANOVA, linear regression test and mixed linear model.ResultsOur findings indicated that the process of collagen glycation increases the stiffness of the matrices and generates advanced glycation end products in a ribose concentration-dependent manner. Furthermore, we identified optimal ribose concentrations and media conditions for cell viability and growth within the glycated matrices. The microenvironment of this collagen based three-dimensional culture induces α-smooth muscle actin and tenascin-C fibroblast protein expression. Finally, a progressive contractile phenotype cell differentiation was associated with the contraction of these gels.ConclusionsThe use of non-enzymatic glycation with a low ribose concentration may provide a suitable model with a mechanic and oxidative modified environment with cells embedded in it, which allowed cell proliferation and induced fibroblast phenotypic changes. Such culture model could be appropriate for investigations of the behavior and phenotypic changes in cells that occur during lung fibrosis as well as for testing different antifibrotic therapies in vitro.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0237-z) contains supplementary material, which is available to authorized users.  相似文献   
65.
The interaction between advanced glycation end products (AGEs) and receptor of AGEs (RAGE) is associated with the development and progression of diabetes-associated osteoporosis, but the mechanisms involved are still poorly understood. In this study, we found that AGE-modified bovine serum albumin (AGE-BSA) induced a biphasic effect on the viability of hFOB1.19 cells; cell proliferation was stimulated after exposure to low dose AGE-BSA, but cell apoptosis was stimulated after exposure to high dose AGE-BSA. The low dose AGE-BSA facilitates proliferation of hFOB1.19 cells by concomitantly promoting autophagy, RAGE production, and the Raf/MEK/ERK signaling pathway activation. Furthermore, we investigated the effects of AGE-BSA on the function of hFOB1.19 cells. Interestingly, the results suggest that the short term effects of low dose AGE-BSA increase osteogenic function and decrease osteoclastogenic function, which are likely mediated by autophagy and the RAGE/Raf/MEK/ERK signal pathway. In contrast, with increased treatment time, the opposite effects were observed. Collectively, AGE-BSA had a biphasic effect on the viability of hFOB1.19 cells in vitro, which was determined by the concentration of AGE-BSA and treatment time. A low concentration of AGE-BSA activated the Raf/MEK/ERK signal pathway through the interaction with RAGE, induced autophagy, and regulated the proliferation and function of hFOB1.19 cells.  相似文献   
66.
Advanced glycation end products (AGEs) that arise from the reaction of sugars with protein side chains are supposed to be involved in the pathogenesis of several diseases and therefore the effects of AGEs on cells are the objective of numerous investigations. Although different cellular responses to AGEs can be measured in cell culture studies, knowledge about the nature of AGE-binding and the involved cell surface receptors is poor. The measurement of AGE-binding to cell surfaces bears the potential to gain a deeper understanding about the nature of AGE-binding to cell surface proteins and could be applied as a preliminary test before performing cell culture studies on AGE effects. Herein, a new material and method for the detection of AGE-binding to cell surfaces is introduced, which has the potential to facilitate the detection of binding. In the present paper, the detection of AGE-binding to cell surface proteins using an artificial system of cellular membrane proteins reconstituted on beads (TRANSIL CaCo-2) is described. The binding of a BSA-AGE derived from a 37 °C incubation with 500 mM Glc (BSA-Glc 500) and the corresponding control to this artificial system was compared with the binding to intact cells and was found to be in good agreement. Additionally, the Kd for the binding of the BSA-Glc 500 used in the study to CaCo-2 surfaces was determined using FITC-labelled samples in a flow cytometric approach. Competitive binding studies were performed using a set of non-labelled BSA-AGEs to compete with FITC-labelled BSA-Glc 500 for the cell surface binding sites. The binding was found to be inhibited to different extends, virtually depending on the degree of arginine modifications within the modified protein used for competition. Additionally, the effects of all AGEs used in the study on CaCo-2 cells was measured using the detection of reactive oxygen species (ROS), which are known to be induced as a primary result of AGE-receptor binding. The induction of ROS was found to linearly correlate to the capacity of the individual AGE to displace FITC-labelled BSA-Glc 500 in competitive binding studies. Therefore, the data indicate, that at least in case of CaCo-2 cells the detection of cell surface binding can serve as a reliable preliminary test for a potential cell-damaging effect of AGEs.  相似文献   
67.
Methylglyoxal (MG) is involved in the pathogenesis of diabetic complications via the formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS). To clarify whether the antidiabetic drug metformin prevents Schwann cell damage induced by MG, we cultured mouse Schwann cells in the presence of MG and metformin. Cell apoptosis was evaluated using Hoechst 33342 nuclear staining, caspase-3 activity, and c-Jun-N-terminal kinase (JNK) phosphorylation. Intracellular ROS formation was determined by flow cytometry, and AMP-activated kinase (AMPK) phosphorylation was also examined. MG treatment resulted in blunted cell proliferation, an increase in the number of apoptotic cells, and the activation of caspase-3 and JNK along with enhanced intracellular ROS formation. All of these changes were significantly inhibited by metformin. No significant activation of AMPK by MG or metformin was observed. Taken together, metformin likely prevents MG-induced apoptotic signals in mouse Schwann cells by inhibiting the formation of AGEs and ROS.  相似文献   
68.
A meta-analysis was performed to assess the associations of the receptor for advanced glycation end products (RAGE) gene polymorphisms [Gly82Ser (rs2070600), 1704 G/T (rs184003), 429 T/C (rs1800625)] with type 2 diabetes mellitus (T2DM), diabetic retinopathy (DR) and diabetic nephropathy (DN). A comprehensive research was conducted to identify all case-control or cohort studies. The fixed or random effect pooled measure was selected based on the homogeneity test among studies that was evaluated with I2. Meta-regression was used to explore the potential sources of between-study heterogeneity. Publication bias was estimated using Peters test. Twenty-nine articles were included. Overall, after excluding articles deviating from Hardy–Weinberg equilibrium in controls and sensitive analysis, no significant association was found between RAGE gene polymorphisms (Gly82Ser, 1704 G/T, 429 T/C) and any of T2DM, DR and DN risk, respectively. Subgroup analysis stratified by ethnicity (Asian and Caucasian) also found no significant association between the above-mentioned three polymorphisms and T2DM risk, respectively. This meta-analysis suggested that there might be no association of RAGE gene polymorphisms (Gly82Ser, 1704 G/T, 429 T/C) with T2DM, DR and DN risk.  相似文献   
69.

Background

Functional polymorphisms in the receptor for advanced glycation end-products (RAGE) gene have been implicated in several vascular diseases. However, to date, no study investigated the association of RAGE polymorphisms with heart failure (HF).

Objective

In this study we tested the hypothesis that the 63-bp insertion/deletion, the − 374T > A (rs1800624) and the − 429T > C (rs1800625) polymorphisms in the RAGE gene might be associated with susceptibility to HF and could predict all-cause mortality in Brazilian outpatients with left ventricular systolic dysfunction.

Methods

A total of 273 consecutive HF patients (196 Caucasian- and 77 African-Brazilians) and 334 healthy blood donors (260 Caucasian- and 74 African-Brazilians) were enrolled in a tertiary care university hospital. Genotyping of RAGE polymorphisms was done by polymerase chain reaction (PCR) or PCR followed by enzyme restriction analysis.

Results

The allele, genotype and haplotype frequencies of − 374T > A and − 429T > C polymorphisms were not significantly different between HF patients and healthy blood donors in both ethnic groups. However, among African-Brazilians, the frequency of carriership of the del allele was lower in HF patients than in blood donors (2.6% vs 12.2%, respectively, p = 0.008). Patients were followed-up for a median of 38 months and the survival analysis did not reveal a consistent association between RAGE polymorphisms and all-cause death in both ethnic groups.

Conclusion

The − 374T > A and − 429T > C polymorphisms in the RAGE gene were not associated with the susceptibility and prognosis of HF. Notwithstanding, the 63-bp ins/del polymorphism might be involved in the susceptibility to HF in African-Brazilians.  相似文献   
70.
目的:探讨Notch信号特异性阻断剂γ-分泌酶抑制剂(DAPT)对AGEs作用下的心肌微血管内皮细胞的增殖、迁移、管样结构的影响。方法:SD大鼠心肌微血管内皮细胞体外分离培养后,以不同浓度DAPT(0.25、0.5、1.0、5.0、10μmol/L)干预200mg/LAGEs作用下的CMECs24h,或者与DAPT(5μmol/L)孵育不同时间(24h、48h、72h、96h、120h),采用MTT比色法检测细胞的增值能力;用Transwell法检测细胞的迁移能力;用毛细血管管样结构形成实验检测DAPT对血管新生的影响。结果:DAPT显著抑制AGEs作用下的心肌微血管内皮细胞的存活,同时浓度越高、时间越长,其抑制效果越明显。结论:DAPT通过阻断Notch信号通路,能抑制AGEs作用下的心肌微血管内皮细胞的增殖及血管新生,促进细胞凋亡。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号