首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   5篇
  国内免费   1篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   7篇
  2018年   6篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   8篇
  2013年   12篇
  2012年   9篇
  2011年   13篇
  2010年   4篇
  2009年   2篇
  2008年   5篇
  2007年   8篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
排序方式: 共有110条查询结果,搜索用时 31 毫秒
21.
Thermostabilities of component enzymes in the pyruvate dehydrogenase complex from Bacillus stearothermophilus decreased in the order lipoamide dehydrogenase, lipoate acetyltransferase, and pyruvate decarboxylase (E1). Fluorescence of an extrinsic 8-amino-1-naphthalenesulfonate (ANS) increased with inactivation of E1. The thermal denaturation of the enzymes resulted in disassembly of the complex. El was involved in a resulting aggregate of the complex. The interaction between ANS and denatured E1 accounted for an increase in fluorescence.  相似文献   
22.
d-Ribose (Rib), a reactive glycation compound that exists in organisms, abnormally increases in the urine of diabetic patients and can yield large amounts of advanced glycation end products (AGEs), leading to cell dysfunction. However, whether cellular proteins are sensitive to this type of glycation is unknown. In this study, we found that cellular AGEs accumulate in Chinese hamster ovary (CHO) cells with increased Rib concentration and administration time. Mass spectrum analysis of isolated AGE-modified proteins from cell lysates showed that glucose-regulated protein 78?kD (GRP78) is one of the main ribosylated proteins. Co-immunoprecipitation assays further confirmed the interaction between AGEs and GRP78. Compared with d-glucose (Glc), Rib produced much more AGEs in cells. In kinetic studies, the first order rate constant of LDH released from CHO cells incubated with Rib was nearly 8-fold higher than that of Glc, suggesting that Rib is highly cytotoxic. Immunofluorescent co-localization analysis manifested partial superimposition of AGEs and GRP78, which were distributed throughout the endoplasmic reticulum. Western blotting showed that the expression of GRP78 is up-regulated and then down-regulated in CHO cells during Rib treatment. In the presence of Rib, the suppression of GRP78 expression either with transfected siRNA or with the inhibitor (-)-epigallocatechin gallate (EGCG) dramatically increased AGE levels and decreased cell viability compared with these parameters in the control groups. GRP78 overexpression decreased AGE levels and rescued the cells from Rib-induced cytotoxicity. These data indicate that GRP78 plays a role in preventing Rib-induced CHO cell cytotoxicity.  相似文献   
23.
Advanced glycation end-products (AGEs) are one of the major factors of hyperglycemia related complications for diabetic patients. We studied the formation of AGEs in type I collagen after Fe2+-catalyzed non-enzymatic glycosylation in vitro. Type I collagen isolated from rat tail tendon was incubated with glucose and increasing concentrations of iron ions Fe2+. After 4 weeks incubation, cytotoxity of AGEs was indicated by the cytotoxity assay of primary human umbilical vein endothelial cells and primary human monocytes cultured with glycosylated collagen AGEs. Fourier transform infrared spectroscopy analysis revealed that structural changes of functional groups in glycosylated collagen are accelerated by the catalyst Fe2+. Using two-dimensional Fourier-transform infrared correlation spectroscopy analyses, for the first time, we demonstrated that the order of structural changes of these functional groups is -CH- > Amide I > Amide II > Amide III > ν(CO) the carboxylic group of Asn, Gln or polyproline amino acid residue in the course of AGE-collagen formation. Knowing the positions of these functional groups in collagen, this order of changes indicates that during glycation of collagen, the structure of the main chain residues in collagen changed first, and then the side chain changed gradually, which may lead to more carboxylic groups exposed to glucose for further formation of AGE-collagen irreversibly. The findings presented may support the design of new therapeutic strategies to prevent or slow down the Fe2+-catalyzed glycosylation of collagen and other matrix proteins.  相似文献   
24.
Advanced glycation end products (AGEs) are believed to play a significant role in the development of diabetic complications. In this study, we measured the levels of autoantibodies against several AGE structures in healthy human plasma and investigated the physiological role of the autoantibodies. A high titer of the autoantibody against Nε-(carboxyethyl)lysine (CEL) was detected in human plasma compared with other AGE structures such as CML and pentosidine. The purified human anti-CEL autoantibody reacted with CEL-modified human serum albumin (CEL-HSA), but not CML-HSA. A rabbit polyclonal anti-CEL antibody, used as a model autoantibody against CEL, accelerated the uptake of CEL-HSA by macrophages, but did not enhance the uptake of native HSA. Furthermore, when 125I-labeled CEL-HSA was injected into the tail vein of mice, accumulation of 125I-CEL-HSA in the liver was accelerated by co-injection of the rabbit anti-CEL antibody. These results demonstrate that the autoantibody against CEL in plasma may play a role in the macrophage uptake of CEL-modified proteins.  相似文献   
25.
The highly reactive electrophile, methylglyoxal (MG), a break down product of carbohydrates, is a major environmental mutagen having potential genotoxic effects. Previous studies have suggested the reaction of MG with free amino groups of proteins forming advanced glycation end products (AGEs). This results in the generation of free radicals which play an important role in pathophysiology of aging and diabetic complications. MG also reacts with free amino group of nucleic acids resulting in the formation of DNA–AGEs. While the formation of nucleoside AGEs has been demonstrated previously, no extensive studies have been performed to assess the genotoxicity and immunogenicity of DNA–AGEs. In this study we report both the genotoxicity and immunogenicity of AGEs formed by MG–Lys–Cu2+ system. Genotoxicity of the experimentally generated AGEs was confirmed by comet-assay. Spectroscopical analysis and melting temperature studies suggest structural perturbations in the DNA as a result of modification. This might be due to generation of single-stranded regions and destabilization of hydrogen bonds. Immunogenicity of native and MG–Lys–Cu2+-DNA was probed in female rabbits. The modified DNA was highly immunogenic eliciting high titre immunogen specific antibodies, while the unmodified form was almost non-immunogenic. The results show structural perturbations in MG–Lys–Cu2+-DNA generating new epitopes that render the molecule immunogenic.  相似文献   
26.
β2-Microglobulin (β2M) modified with advanced glycation end products (AGEs) is a major component of the amyloid deposits in hemodialysis-associated amyloidosis (HAA). However, the effect of glycation on the misfolding and aggregation of β2M has not been studied so far. Here we examine the molecular mechanism of aggregate formation of HAA-related ribosylated β2M in vitro. We find that the glycating agent d-ribose interacts with human β2M to generate AGEs that form aggregates in a time-dependent manner. Ribosylated β2M molecules are highly oligomerized compared with unglycated β2M, and have granular morphology. Furthermore, such ribosylated β2M aggregates show significant cytotoxicity to both human SH-SY5Y neuroblastoma and human foreskin fibroblast FS2 cells and induce intracellular reactive oxygen species (ROS). Presence of the antioxidant N-acetylcysteine (1.0 mM) attenuated intracellular ROS and prevented cell death induction in both SH-SY5Y and FS2 cells, indicating that the cytotoxicity of ribosylated β2M aggregates depends on a ROS-mediated pathway in both cell lines. In other words, d-ribose reacts with β2M and induces the ribosylated protein to form granular aggregates with high cytotoxicity through a ROS-mediated pathway. These findings suggest that ribosylated β2M aggregates could contribute to the dysfunction and death of cells and could play an important role in the pathogenesis of β2M-associated diseases such as HAA.  相似文献   
27.

Background

Aggrecan is the major non-collagenous component of the intervertebral disc. It is a large proteoglycan possessing numerous glycosaminoglycan chains and the ability to form aggregates in association with hyaluronan. Its abundance and unique molecular features provide the disc with its osmotic properties and ability to withstand compressive loads. Degradation and loss of aggrecan result in impairment of disc function and the onset of degeneration.

Scope of review

This review summarizes current knowledge concerning the structure and function of aggrecan in the normal intervertebral disc and how and why these change in aging and degenerative disc disease. It also outlines how supplementation with aggrecan or a biomimetic may be of therapeutic value in treating the degenerate disc.

Major conclusions

Aggrecan abundance reaches a plateau in the early twenties, declining thereafter due to proteolysis, mainly by matrix metalloproteinases and aggrecanases, though degradation of hyaluronan and non-enzymic glycation may also participate. Aggrecan loss is an early event in disc degeneration, although it is a lengthy process as degradation products may accumulate in the disc for decades. The low turnover rate of the remaining aggrecan is an additional contributing factor, preventing protein renewal. It may be possible to retard the degenerative process by restoring the aggrecan content of the disc, or by supplementing with a bioimimetic possessing similar osmotic properties.

General significance

This review provides a basis for scientists and clinicians to understand and appreciate the central role of aggrecan in the function, degeneration and repair of the intervertebral disc.  相似文献   
28.
Advanced glycation end-products (AGEs) stimulate reactive oxygen species (ROS) generation and represent a risk factor for atherosclerosis, while their formation seems to be prevented by zinc. Metallothioneins (MT), zinc-binding proteins exert an antioxidant function by regulating intracellular zinc availability and protecting cells from ROS damages. +1245 A/G MT1A polymorphism was implicated in type 2 diabetes and in cardiovascular disease development as well as in the modulation of antioxidant response. The purpose of this study was to investigate the influence of +1245 A/G MT1A polymorphism on AGEs and ROS production and to verify the effect of zinc supplementation on plasma AGEs, zinc status parameters and antioxidant enzyme activity in relation to this SNP. One hundred and ten healthy subjects (72 ± 6 years) from the ZincAge study were supplied with zinc aspartate (10 mg/day for 7 weeks) and screened for +1245 MT1A polymorphism. +1245 MT1A G+ (Arginine) genotype showed higher plasma AGEs and ROS production in peripheral blood mononuclear cells (PBMCs) than G− (Lysine) one at the baseline. No significant changes after zinc supplementation were observed for AGEs, ROS and MT levels as well as for enzyme antioxidant activity in relation to the genotype. Among zinc status parameters, major increases were observed for the intracellular labile zinc (iZnL) and the NO-induced release of zinc in PBMCs, in G+ genotype as compared to G− one. In summary, +1245 G+ carriers showed increased plasma AGEs and ROS production in PBMCs at baseline and a higher improvement in iZnL after zinc intervention with respect to G− individuals.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0426-2) contains supplementary material, which is available to authorized users.  相似文献   
29.
《Free radical research》2013,47(8):28-38
Abstract

Advanced glycation end-products (AGEs) are a heterogeneous group of compounds formed by the Maillard chemical process of non- enzymatic glycation of free amino groups of proteins, lipids and nucleic acids. This chemical modification of biomolecules is triggered by endogeneous hyperglycaemic or oxidative stress-related processes. Additionally, AGEs can derive from exogenous, mostly diet-related, sources. Considering that AGE accumulation in tissues correlates with ageing and is a hallmark in several age-related diseases it is not surprising that the role of AGEs in ageing and pathology has become increasingly evident. The receptor for AGEs (RAGE) is a single transmembrane protein being expressed in a wide variety of human cells. RAGE binds a broad repertoire of extracellular ligands and mediates responses to stress conditions by activating multiple signal transduction pathways being mostly responsible for acute and/or chronic inflammation. RAGE activation has been implicated in ageing as well as in a number of age-related diseases, including atherosclerosis, neurodegeneration, arthritis, stoke, diabetes and cancer. Here we present a synopsis of findings that relate to AGEs-reported implication in cell signalling pathways and ageing, as well as in pathology. Potential implications and opportunities for translational research and the development of new therapies are also discussed.  相似文献   
30.
MicroRNAs (miRNAs) play important roles in epithelial-to-mesenchymal transition (EMT). Moreover, hyperglycaemia induces damage to renal tubular epithelial cells, which may lead to EMT in diabetic nephropathy. However, the effects of miRNAs on EMT in diabetic nephropathy are poorly understood. In the present study, we found that the level of microRNA-23b (miR-23b) was significantly decreased in high glucose (HG)-induced human kidney proximal tubular epithelial cells (HK2) and in kidney tissues of db/db mice. Overexpression of miR-23b attenuated HG-induced EMT, whereas knockdown of miR-23b induced normal glucose (NG)-mediated EMT in HK2 cells. Mechanistically, miR-23b suppressed EMT in diabetic nephropathy by targeting high mobility group A2 (HMGA2), thereby repressing PI3K-AKT signalling pathway activation. Additionally, HMGA2 knockdown or inhibition of the PI3K-AKT signalling pathway with LY294002 mimicked the effects of miR-23b overexpression on HG-mediated EMT, whereas HMGA2 overexpression or activation of the PI3K-AKT signalling pathway with BpV prevented the effects of miR-23b on HG-mediated EMT. We also confirmed that overexpression of miR-23b alleviated EMT, decreased the expression levels of EMT-related genes, ameliorated renal morphology, glycogen accumulation, fibrotic responses and improved renal functions in db/db mice. Taken together, we showed for the first time that miR-23b acts as a suppressor of EMT in diabetic nephropathy through repressing PI3K-AKT signalling pathway activation by targeting HMGA2, which maybe a potential therapeutic target for diabetes-induced renal dysfunction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号