首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   3篇
  国内免费   1篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   6篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   7篇
  2013年   13篇
  2012年   4篇
  2011年   8篇
  2010年   8篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   2篇
  2005年   4篇
  2004年   8篇
  2003年   5篇
  2002年   3篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
61.
62.
Advanced glycation end-products (AGEs) are extremely accumulated in the retinal vascular and epithelial cells of diabetes mellitus (DM) patients, particularly with diabetic retinopathy (DR). To elucidate the pathogenesis of the AGE-induced toxicity to retinal epithelial cells, we investigated the role of Fas–Fas ligand (FasL) signaling and mitochondrial dysfunction in the AGE-induced apoptosis. Results demonstrated that the AGE-BSA- induced apoptosis of retinal ARPE-19 cells. And the AGE-BSA treatment caused mitochondrial dysfunction, via deregulating the B-cell lymphoma 2 (Bcl-2) signaling. Moreover, the Fas/FasL and its downstreamer Caspase 8 were promoted by the AGE-BSA treatment, and the exogenous α-Fas exacerbated the activation of Caspase 3/8. On the other side, the siRNA-mediated knockdown of Fas/FasL inhibited the AGE-BSA-induced apoptosis. Taken together, we confirmed the activation of Fas–FasL signaling and of mitochondrial dysfunction in the AGE-BSA-promoted apoptosis in retinal ARPE-19 cells, implying the important role of Fas–FasL signaling in the DR in DM.  相似文献   
63.
Akiko Hirose 《FEBS letters》2010,584(1):61-35070
Although increased vascular permeability is known to be a major characteristic of diabetic vasculopathy, the precise mechanisms and relevance of advanced glycation end products (AGE) to hyperpermeability of vessels remains unclear. Here, we studied changes in cytoskeletal configuration and the signaling mechanism induced by AGE in human endothelial cells. AGE-BSA stimulation induced Rho activation, intercellular gap formation, prominent actin stress fiber and cell contraction without changing VE-cadherin, and subsequently transendothelial diffusion of FITC-labeled dextran. These processes induced by AGE-BSA were inhibited by either Rho-kinase inhibitor Y27632 or anti-RAGE antibody. We also showed that RhoA and RAGE spontaneously formed a complex. These findings suggest that activation of RAGE/Rho is involved in AGE-BSA-induced hyperpermeability through gap formation and actin reorganization in diabetes.

Structured summary

MINT-7301170: Rhotekin (uniprotkb:Q9BST9) physically interacts (MI:0915) with RhoA (uniprotkb:P61586) by pull down (MI:0096)MINT-7301204, MINT-7301186: RhoA (uniprotkb:P61586) physically interacts (MI:0915) with RAGE (uniprotkb:Q15109) by anti bait coimmunoprecipitation (MI:0006)  相似文献   
64.
Familial amyloidotic polyneuropathy is a neurodegenerative disorder characterized by systemic extracellular deposition of transthyretin (TTR) amyloid fibrils. The latter have been proposed to trigger neurodegeneration through engagement of the receptor for advanced glycation end products (RAGE). Here we show that TTR interaction with RAGE is conserved across mouse and human species and is not dependent on RAGE glycosylation. Moreover, strand D of TTR structure seems important for the TTR-RAGE interaction as well as a motif in RAGE (residues 102-118) located within the V-domain; this motif suppressed TTR aggregate-induced cytotoxicity in cell culture.  相似文献   
65.
Functional role of CD44, a principal receptor of hyaluronan, and glycated albumin for differentiation of resting human monocytes isolated by counterflow centrifugal elutriation was investigated. Flow cytometric analysis revealed that amadori-modified glycated albumin induced expression of CD44 as well as macrophage scavenger receptors (MSRs) such as CD36 and CD68 on resting monocytes. Crosslinking of CD44 on monocytes also induced MSR expression. Furthermore, CD44 crosslinking and/or glycated albumin enhanced the uptake of oxidized-low density lipoprotein in monocytes and foam cell formation. Taken together, engagement of CD44 (e.g., hyaluronan) and glycated albumin induced the differentiation of resting monocytes into foam macrophages through the induction of MSRs, implying that CD44 could be involved in atherosclerotic lesions of those such as diabetic patients.  相似文献   
66.
Lee SJ  So IS  Park SY  Kim IS 《FEBS letters》2008,582(15):2161-2166
Stabilin-2 was recently identified as a novel receptor for membrane phosphatidylserine of apoptotic cells. To identify proteins that were candidates for stabilin-2 cytoplasmic domain binding, we screened a human spleen cDNA library using the yeast two-hybrid system. We found that thymosin beta4 interacts with the stabilin-2 cytoplasmic domain and is co-localized with stabilin-2 at the phagocytic cup. Knockdown of thymosin beta4 significantly decreased the phagocytic activity of stabilin-2, whereas overexpression of thymosin beta4 increased this activity. Additionally, amino acids 2504-2514 of stabilin-2 cytoplasmic domain were found to be responsible for the interaction with thymosin beta4. Taken together, these results suggest that thymosin beta4 is a downstream molecule of stabilin-2 that plays a role in stabilin-2-mediated cell corpse clearance.  相似文献   
67.

Background

In recent years, there has been a growing interest to explore the association between liver injury and diabetes. Advanced glycated end product (AGE) formation which characterizes diabetic complications is formed through hyperglycemia mediated oxidative stress and is itself a source for ROS. Further, in VL-17A cells over-expressing ADH and CYP2E1, greatly increased oxidative stress and decreased viability have been observed with high glucose exposure.

Methods

In VL-17A cells treated with high glucose and pretreated with the different inhibitors of ADH and CYP2E1, the changes in cell viability, oxidative stress parameters and formation of AGE, were studied.

Results

Inhibition of CYP2E1 with 10 μM diallyl sulfide most effectively led to decreases in the oxidative stress and toxicity as compared with ADH inhibition with 2 mM pyrazole or the combined inhibition of ADH and CYP2E1 with 5 mM 4-methyl pyrazole. AGE formation was decreased in VL-17A cells when compared with HepG2 cells devoid of the enzymes. Further, AGE formation was decreased to the greatest extent with the inhibitor for CYP2E1 suggesting that high glucose inducible CYP2E1 and the consequent ROS aid AGE formation.

Conclusions

Thus, CYP2E1 plays a pivotal role in the high glucose induced oxidative stress and toxicity in liver cells as observed through direct evidences obtained utilizing the different inhibitors for ADH and CYP2E1.

General significance

The study demonstrates the role of CYP2E1 mediated oxidative stress in aggravating hyperglycemic insult and suggests that CYP2E1 may be a vital component of hyperglycemia mediated oxidative injury in liver.  相似文献   
68.
Garlic is used all over the world for treatment of different diseases. A wide range of biological activities of garlic has been verified in vitro and in vivo. One of major proteins of garlic which has been isolated and purified is the 14 kDa protein. This protein has been shown to have immunomodulatory effects. In this study, the effect of the 14 kDa protein isolated from aged garlic extract (AGE) was investigated on maturation and immunomodulatory activity of dendritic cells (DC). Proteins were purified from AGE by biochemical method; the semi-purified 14 kDa protein was run on gel filtration Sephadex G50 and its purity was checked by SDS–PAGE. DC were isolated from spleen of BALB/c mice by Nycodenz centrifugation and their adhesiveness to plastic dish. 14 kDa protein from AGE was added to overnight culture of DC medium and the expression percentage of CD40, CD86, and MHC-II was evaluated by flowcytometric analysis. Also, proliferation of T-cells was measured by allogenic mixed lymphocyte reaction (MLR) test. The purified 14 kDa protein isolated from AGE increased the expression of CD40 molecule on DC, but it did not influence CD86 and MHCII molecules. Furthermore, no significant differences were noticed in the pulsed-DC with 14 kDa protein and non-pulsed DC on the MLR.  相似文献   
69.
Dicarbonyl/l ‐xylulose reductase (DCXR; SDR20C1), a member of the short‐chain dehydrogenase/reductase (SDR) superfamily catalyzes the reduction of α‐dicarbonyl compounds and monosaccharides. Its role in the metabolism of l ‐xylulose has been known since 1970, when essential pentosuria was found to be associated with DCXR deficiency. Despite its early discovery, our knowledge about the role of human DCXR in normal physiology and pathophysiology is still incomplete. Sporadic studies have demonstrated aberrant expression in several cancers, but their physiological significance is unknown. In reproductive medicine, where DCXR is commonly referred to as ‘sperm surface protein P34H’, it serves as marker for epididymal sperm maturation and is essential for gamete interaction and successful fertilization. DCXR exhibits a multifunctional nature, both acting as a carbonyl reductase and also performing non‐catalytic functions, possibly resulting from interactions with other proteins. Recent observations associate DCXR with a role in cell adhesion, pointing to a novel function involving tumour progression and possibly metastasis. This review summarizes the current knowledge about human DCXR and its orthologs from mouse and Caenorhabditis elegans (DHS‐21) with an emphasis on its multifunctional characteristics. Due to its close structural relationship with DCXR, carbonyl reductase 2 (Cbr2), a tetrameric enzyme found in several non‐primate species is also discussed. Similar to human DCXR, Cbr2 from golden hamster (P26h) and cow (P25b) is essential for sperm–zona pellucida interaction and fertilization. Because of the apparent similarity of these two proteins and the inconsistent use of alternative names previously, we provide an overview of the systematic classification of DCXR and Cbr2 and a phylogenetic analysis to illustrate their ancestry.  相似文献   
70.
Diabetic nephropathy is one of the main causes of end-stage renal disease, in which the development of tubular damage depends on factors such as high glucose levels, albuminuria and advanced glycation end-product. In this study, we analyzed the involvement of heparanase, a heparan sulfate glycosidase, in the homeostasis of proximal tubular epithelial cells in the diabetic milieu. In vitro studies were performed on a wild-type and stably heparanase-silenced adult tubular line (HK2) and HEK293. Gene and protein expression analyses were performed in the presence and absence of diabetic mediators. Albumin and advanced glycation end-product, but not high glucose levels, increased heparanase expression in adult tubular cells via the AKT/PI3K signaling pathway. This over-expression of heparanase is then responsible for heparan sulfate reduction via its endoglycosidase activity and its capacity to regulate the heparan sulfate-proteoglycans core protein. In fact, heparanase regulates the gene expression of syndecan-1, the most abundant heparan sulfate-proteoglycans in tubular cells. We showed that heparanase is a target gene of the diabetic nephropathy mediators albumin and advanced glycation end-product, so it may be relevant to the progression of diabetic nephropathy. It could take part in several processes, e.g. extracellular-matrix remodeling and cell-cell crosstalk, via its heparan sulfate endoglycosidase activity and capacity to regulate the expression of the heparan sulfate-proteoglycan syndecan-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号