首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   3篇
  国内免费   1篇
  104篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   6篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   7篇
  2013年   13篇
  2012年   4篇
  2011年   8篇
  2010年   8篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   2篇
  2005年   4篇
  2004年   8篇
  2003年   5篇
  2002年   3篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有104条查询结果,搜索用时 0 毫秒
101.
Diabetes is characterized by elevated fasting blood glucose (FBG) resulting from improper insulin regulation and/or insulin resistance. Herein we used female C57BL/6J mouse models for type 1 diabetes (streptozotocin [STZ] treatment) and type 2 diabetes (high-fat diet) to examine the ability of 4b,5,9b,10-tetrahydroindeno[1,2-b]indole (THII) to intervene in the progression of diabetes. THII (100 microM in drinking water) significantly diminished and partially reversed the increase in FBG levels produced by STZ. After 10 weeks on a high-fat diet, mice had normal FBG levels, but exhibited fasting hyperinsulemia and loss of glucose tolerance. THII significantly diminished these changes in glucose and insulin. In isolated liver mitochondria, THII inhibited succinate-dependent H(2)O(2) production, while in white adipose tissue, THII inhibited NADPH oxidase-mediated H(2)O(2) production and lipid peroxidation. Without intervention, such oxidative processes might otherwise promote diabetogenesis via inflammatory pathways. THII also increased O(2) consumption and lowered respiratory quotient (CO(2) produced/O(2) consumed) in vivo, indicating a greater utilization of fat for metabolic fuel. Increased metabolic utilization of fat correlated with a decrease in the rate of body weight gain in THII-treated mice fed the high-fat diet. We conclude that THII may retard the progression of diabetes via multiple pathways, including the inhibition of oxidative and inflammatory pathways.  相似文献   
102.
The retina is exposed to a lifetime of potentially damaging environmental and physiological factors that make the component cells exquisitely sensitive to age-related processes. Retinal ageing is complex and a raft of abnormalities can accumulate in all layers of the retina. Some of this pathology serves as a sinister preamble to serious conditions such as age-related macular degeneration (AMD) which remains the leading cause of irreversible blindness in the Western world.  相似文献   
103.
Reducing sugars and reactive aldehydes, such as glyceraldehyde, non-enzymatically react with amino or guanidino groups of proteins to form advanced glycation end-products (AGEs) by the Maillard reaction that involves Schiff base formation followed by Amadori rearrangement. AGEs are found relatively in abundance in the human eye and to accumulate at a higher rate in diseases that impair vision such as cataract, diabetic retinopathy or age-related macular degeneration. We identified two novel AGEs of pyrrolopyridinium lysine dimer derived from glyceraldehyde, PPG1 and PPG2, in the Maillard reaction of Nα-acetyl-l-lysine with glyceraldehyde under physiological conditions. Having fluorophores similar to that of vesperlysine A, which was isolated from the human lens, PPGs were found to act as photosensitizers producing singlet oxygen in response to blue light irradiation. Moreover, PPG2 interacts with receptor for AGE (RAGE) in vitro with a higher binding affinity than GLAP, a well-known ligand of the receptor. We also proposed a pathway to form PPGs and discussed how they would be formed in vitro. As glyceraldehyde-derived AGEs have been studied extensively in connection with various hyperglycemia-related diseases, further studies will be required to find PPGs in vivo such as in the lens or other tissues.  相似文献   
104.
Role of nonenzymatic glycosylation in atherogenesis   总被引:2,自引:0,他引:2  
This review summarizes progress in nonenzymatic glycosylation research of potential relevance to atherosclerosis using a hypothetical model based on current concepts of atherogenesis. Recently, new information has been presented showing that the initial Amadori product undergoes a series of further reactions and rearrangements to form adducts, called advanced glycosylation end products (AGE). These products are irreversible and accumulate indefinitely on long-lived molecules. These AGE covalently trap soluble plasma proteins, act as signals for macrophage recognition and uptake, and induce mutations in double-stranded plasmid DNA. Covalent trapping of low-density lipoprotein (LDL) by AGE on collagen or elastin could promote lipid accumulation in the arterial wall, whereas AGE trapping of von Willebrand factor would increase platelet adhesion and aggregation leading to intimal smooth muscle cell proliferation. Recognition and uptake of AGE-proteins by scavenging macrophages could further contribute to the process of atherogenesis by stimulating release of macrophage secretory products such as macrophage-derived growth factor. Accumulation of AGE on smooth muscle cell DNA might also enhance arterial smooth muscle cell proliferation by increasing the rate of mutations affecting growth controls. This model should provide the basis for future experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号