首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2152篇
  免费   49篇
  国内免费   130篇
  2024年   1篇
  2023年   3篇
  2022年   3篇
  2021年   10篇
  2020年   12篇
  2019年   15篇
  2018年   24篇
  2017年   20篇
  2016年   28篇
  2015年   30篇
  2014年   61篇
  2013年   92篇
  2012年   79篇
  2011年   82篇
  2010年   94篇
  2009年   145篇
  2008年   156篇
  2007年   176篇
  2006年   155篇
  2005年   159篇
  2004年   115篇
  2003年   120篇
  2002年   98篇
  2001年   102篇
  2000年   119篇
  1999年   88篇
  1998年   80篇
  1997年   51篇
  1996年   50篇
  1995年   39篇
  1994年   41篇
  1993年   40篇
  1992年   25篇
  1991年   8篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
排序方式: 共有2331条查询结果,搜索用时 31 毫秒
61.
为了解毛竹(Phyllostachys edulis)种下类型的遗传关系,对花龟竹(P.edulis‘Mira’)、斑毛竹(‘Porphyrosticta’)、安吉锦毛竹(‘Anjiensis’)、麻衣竹(‘Exaurita’)、黄皮毛竹(‘Holochrysa’)、绿槽龟甲竹(‘Lücaoguijiazhu’)、孝丰紫筋毛竹(‘Purpureosulcata’)等7个新近发表的种下类型进行了AFLP分子标记分析。结果表明,采用筛选的8对引物组合共扩增了1728条条带,多态性条带百分率达98.77%,检测到多态性位点881个。Nei’s遗传多样性指数(H)为0.2736,Shannon信息指数(I)为0.4291。这丰富了毛竹所有23个种下类型的分子亲缘关系研究数据。  相似文献   
62.
The Bushmanland Inselberg Region (BIR) of South Africa provides an ideal system to study population interactions, as these inselbergs function as islands of Succulent Karoo surrounded by Nama Karoo vegetation. The population genetics of four Conophytum taxa endemic to the quartz-associated habitats of inselbergs in the BIR were investigated using amplified fragment length polymorphisms (AFLP), namely C. marginatum subsp. haramoepense, C. marginatum subsp. marginatum, C. maughanii, and C. ratum. Conophytum marginatum colonizes the quartz outcrops on the summits of the inselbergs, while C. maughanii and C. ratum occupy quartz patches at the summit and base of the inselbergs. A total of 24 populations were sampled to assess genetic differentiation between populations of each species, specifically between summit and base populations of C. ratum, eastern and western populations of C. maughanii and populations of the two subspecies of C. marginatum. Moderate levels of genetic differentiation were recovered between the summit and base populations of C. ratum, with an indication of some genetic connectivity between the populations. Slight differentiation between the eastern and western populations of C. maughanii was recovered, however, this was not reflected in the PCoA and STRUCTURE results. In C. marginatum, no significant genetic differentiation was recovered between populations of the subspecies. These results may reflect evidence of different dispersal mechanisms in the species, with the genetic connectivity between populations of C. ratum possibly indicating dispersal through hygrochastic capsules, while genetic connectivity between populations of C. maughanii and C. marginatum may, for the first time, suggest long-distance dispersal, i.e. anemochory. This study provides the first insights into population interactions across the BIR and highlights the importance of conservation in the region, particularly of the Gamsberg, in light of the recent mining activities.  相似文献   
63.
Estuarine organisms grow in highly heterogeneous habitats, and their genetic differentiation is driven by selective and neutral processes as well as population colonization history. However, the relative importance of the processes that underlie genetic structure is still puzzling. Scirpus mariqueter is a perennial grass almost limited in the Changjiang River estuary and its adjacent Qiantang River estuary. Here, using amplified fragment length polymorphism (AFLP), a moderate‐high level of genetic differentiation among populations (range FST: 0.0310–0.3325) was showed despite large ongoing dispersal. FLOCK assigned all individuals to 13 clusters and revealed a complex genetic structure. Some genetic clusters were limited in peripheries compared with very mixing constitution in center populations, suggesting local adaptation was more likely to occur in peripheral populations. 21 candidate outliers under positive selection were detected, and further, the differentiation patterns correlated with geographic distance, salinity difference, and colonization history were analyzed with or without the outliers. Combined results of AMOVA and IBD based on different dataset, it was found that the effects of geographic distance and population colonization history on isolation seemed to be promoted by divergent selection. However, none‐liner IBE pattern indicates the effects of salinity were overwhelmed by spatial distance or other ecological processes in certain areas and also suggests that salinity was not the only selective factor driving population differentiation. These results together indicate that geographic distance, salinity difference, and colonization history co‐contributed in shaping the genetic structure of S. mariqueter and that their relative importance was correlated with spatial scale and environment gradient.  相似文献   
64.
Zhang L  Yang C  Zhang Y  Li L  Zhang X  Zhang Q  Xiang J 《Genetica》2007,131(1):37-49
Pacific white shrimp (Litopenaeus vannamei) is the leading species farmed in the Western Hemisphere and an economically important aquaculture species in China. In this project, a genetic linkage map was constructed using amplified fragment length polymorphism (AFLP) and microsatellite markers. One hundred and eight select AFLP primer combinations and 30 polymorphic microsatellite markers produced 2071 markers that were polymorphic in either of the parents and segregated in the progeny. Of these segregating markers, 319 were mapped to 45 linkage groups of the female framework map, covering a total of 4134.4 cM; and 267 markers were assigned to 45 linkage groups of the male map, covering a total of 3220.9 cM. High recombination rates were found in both parental maps. A sex-linked microsatellite marker was mapped on the female map with 6.6 cM to sex and a LOD of 17.8, two other microsatellite markers were also linked with both 8.6 cM to sex and LOD score of 14.3 and 16.4. The genetic maps presented here will serve as a basis for the construction of a high-resolution genetic map, quantitative trait loci (QTLs) detection, marker-assisted selection (MAS) and comparative genome mapping.  相似文献   
65.
Peach tree short life (PTSL) is a devastating disease syndrome of peach [Prunus persica (L.) Batsch] caused by multiple factors; the molecular biology of its tolerance/susceptibility is unknown. The difficulty of studying PTSL is that tree survival or death is not obvious until 3 to 5 years after planting when the symptoms of PTSL first appear. Tolerance to PTSL was unknown in Prunus until the rootstock Guardian® ‘BY520-9’ was introduced into commercial orchards in 1994. To study the genetics of the response to PTSL, a controlled F2 cross was made between Guardian® ‘BY520-9’ selection 3-17-7 (PTSL-tolerant) and Nemaguard (PTSL-susceptible). An F1 hybrid was then selfed to generate an F2 population expected to segregate for PTSL response. One hundred fifty-one AFLPs and 21 SSRs, including anchor loci from the Prunus reference genetic map, were used to construct a molecular genetic map based on 100 F2 seedlings. This map covers a genetic distance of 737 cM with an average marker spacing of 4.7 cM and will be used as a framework to construct a highly saturated molecular genetic map. Of the 140 mapped AFLP markers, 38 were associated with PTSL response, as identified previously by bulked segregant analysis. The distribution of the markers associated with PTSL response on the newly constructed genetic map was compared with the recently published Prunus resistance map. This comparison revealed that some resistance gene analogs and several PTSL-associated AFLP markers were located in the same regions in several Prunus linkage groups: G1, G2, G4, G5, and G6. This peach rootstock map can also be viewed and compared with other Prunus maps in comparative map viewer CMap in the Genome Database for Rosaceae (GDR) at http://www.rosaceae.org  相似文献   
66.
蚕豆AFLP技术体系的建立与优化   总被引:4,自引:0,他引:4  
对蚕豆DNA提取质量和浓度、DNA双酶切与连接、酶切连接产物的预扩增和选择性扩增等AFLP技术体系中的关键技术进行了优化处理,构建了蚕豆AFLP银染技术体系。酶切与连接可在12.5μl体系中一步完成,酶切连接温度为37℃,反应时间12~14 h;预扩增体系为20μl,选择性扩增体系为10μl。采用该技术体系应用8对引物构建的蚕豆种质资源AFLP指纹图谱,扩增条带多、多态性强且质量好,可满足遗传多样性分析要求。  相似文献   
67.
Abstract Genome analysis of Pseudomonas aeruginosa was performed by digestion with rare-cutting restriction endonucleases and subsequent one- and two-dimensional field inversion gel electrophoresis (FIGE). The frequency of chromosomal recognition sites increased in the order Spe I, Dra I, Xba I, Ssp I, Nhe I. The genome size of strain PAO and the 17 IATS strains varied from 4.4 × 106 to 5.4 × 106 base pairs. Double restriction digests and two-dimensional FIGE provide a genome fingerprint which is useful for the identification and typing of the respective strains.  相似文献   
68.
Aims: To assess the phenotypic, symbiotic and genotypic diversity scope of Mesorhizobium spp. strains associated with Acacia seyal (Del.) isolated from different agro‐ecological zones in Senegal, and uses of susceptible microbial inoculum in a reafforestation process. Methods and Results: A polyphasic approach including phenotypic and genotypic techniques was used to study the diversity and their relationships with other biovars and species of rhizobia. The geographical origins of the strains have limited effect on their phylogenetic and phenotypic classification. Nodulation tests indicated promiscuity of the strains studied, because they were capable of nodulating six woody legume species (Acacia auriculiformis, Acacia senegal, A. seyal, Acacia tortilis ssp. raddiana, Leucaena leucocephala and Prosopis juliflora). Sequencing and phylogenetic analyses of nodA, nodC and nifH genes pointed out that in contrast to nodA gene, the phylogenies of nodC and nifH genes were not consistent with that of 16S rRNA, indicating that these genes of the A. seyal‐nodulating rhizobia might have different origins. Microbial inoculation on nonsterile soil had significant effect on the nodules number and the growth of the seedlings, indicating that these strains of rhizobia might be used as inoculum. Conclusions: The results indicated that A. seyal is a nonselective host that can establish effective symbiosis with Mesorhizobium spp. strains from diverse genomic backgrounds and that the selected A. seyal‐nodulating rhizobia could enhance plant growth. Significance and Impact of the Study: These results showed the important role that A. seyal could play in the improvement of reafforestation process as a promiscuous host, which can establish effective symbiosis with rhizobia from diverse genomic backgrounds.  相似文献   
69.
DNA fingerprinting was used to characterize patterns of paternity in two populations of Ctenomys talarum from Buenos Aires Province, Argentina. The multilocus probe PV47-2 was used to detect variation in genomic DNA extracted from 12 females, their 32 offspring, and 14 putative sires. For 11 out of 12 litters examined, a single male capable of providing all nonmaternal bands was identified. Within each study population, individual males sired more than one litter, suggesting that C. talarum is polygynous. No evidence of multiple paternity of litters was found. High band-sharing values among females suggest that further research is needed to assess the population genetic structure of this species.  相似文献   
70.
Genetic diversity at variable-number-tandem-repeat (VNTR) loci was examined in the common cattail, Typha latifolia (Typhaceae), using three synthetic DNA probes composed of tandemly repeated “core” sequences (GACA, GATA, and GCAC). The principal objectives of this investigation were to determine whether: (1) the previously reported almost complete lack of polymorphism at allozyme loci in this species was indicative of a reduced amount of genetic diversity at VNTR loci as well; (2) VNTR markers were informative about possible clonal propagation; and (3) significant differences in genetic structure of sampling sites were associated with differences in environmental levels of pollutants at those sites. Previously, widespread sampling across the eastern United States, surveying across ten allozyme loci, has detected only two genotypes, involving a difference at a single locus, among 104 populations. In this study, the amount of genetic diversity detected at VNTR loci: (1) among ramets (N = 40; 40 genotypes detected) collected at ∼8-km intervals along a 320-km transect; (2) among ramets (N = 220; 117 genotypes detected) from five study sites separated by 50–3000 m; and (3) even among ramets within each study site [N = 44 per site; from 13 to 34 genotypes detected per site (270 m2)] exceeds that previously found in those more geographically widespread allozyme surveys. Among the 260 ramets analyzed here, the mean number of bands scored per individual was 48.61 (SD = 2.80). Mean genetic similarity among ramets collected along the 320-km transect was 0.91, which was within the range of mean genetic similarity within the five study sites (range: 0.89–0.95). Among the five study sites, 61% of the samples analyzed appeared to be clonal ramets, with up to 12 clones detected for 44 ramets sampled within a site. Clones grew intermingled and ranged up to 39 m in extent. Permutation tests of genetic similarity revealed significant genetic differentiation between each of the five study sites. Consistent with the previous allozyme studies, T. latifolia was characterized by extremely low genetic variation relative to levels of polymorphism detected at VNTR loci in other plant species. Estimated heterozygosity among ramets along the 320-km transect ranged from 0.11 to 0.13, while that within the five study sites ranged from 0.05 to 0.12. Estimates of Fst (0.32–0.41) also indicated considerable genetic subdivision among these stands. Significantly higher genetic diversity was detected at the two study sites that chemistry and toxicity data indicate to be the most severely impacted by pollutants. Although this correlation does not establish cause and effect, the results of this study indicate that the analysis of genetic diversity at VNTR loci may be a useful tool for monitoring anthropogenic-induced changes in the genetic structure of natural populations of plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号