首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   563篇
  免费   18篇
  国内免费   27篇
  608篇
  2023年   5篇
  2022年   6篇
  2021年   13篇
  2020年   9篇
  2019年   31篇
  2018年   40篇
  2017年   12篇
  2016年   6篇
  2015年   10篇
  2014年   61篇
  2013年   57篇
  2012年   51篇
  2011年   68篇
  2010年   39篇
  2009年   26篇
  2008年   40篇
  2007年   36篇
  2006年   29篇
  2005年   29篇
  2004年   10篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
  1994年   2篇
  1988年   1篇
  1985年   1篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
排序方式: 共有608条查询结果,搜索用时 0 毫秒
11.
3-[18F]Fluoro-2-hydroxypropyl substituted compounds were synthesized and evaluated as novel 18F-labeled PET tracers for imaging Aβ plaque in a living brain. All compounds exhibited high binding affinities toward the synthetic Aβ1–42 aggregate and/or Alzheimer’s disease brain homogenate. In the microPET study with normal mice, the 3-[18F]fluoro-2-hydroxypropyl substituted compounds resulted in fast brain washout by reducing the lipophilicities of the compounds. Intriguingly, (S)-configured PET tracers, (S)-[18F]1b and (S)-[18F]1c, exhibited a 2.8 and 4.0-fold faster brain washout rate at a peak/30 min in the mouse brain than the corresponding (R)-configured PET tracers despite there being no meaningful difference in binding affinities toward Aβ plaque. A further evaluation of (S)-[18F]1c with healthy rhesus monkeys also revealed excellent clearance from the frontal cortex with ratios of 7.0, 16.0, 30.0 and 49.0 at a peak/30, 60, 90, and 120 min, respectively. These results suggest that (S)-[18F]1c may be a potential PET tracer for imaging Aβ plaque in a living brain.  相似文献   
12.
Ren QG  Liao XM  Chen XQ  Liu GP  Wang JZ 《FEBS letters》2007,581(7):1521-1528
Dysfunction of proteasome contributes to the accumulation of the abnormally hyperphosphorylated tau in Alzheimer's disease. However, whether tau hyperphosphorylation and accumulation affect the activity of proteasome is elusive. Here we found that a moderate tau phosphorylation activated the trypsin-like activity of proteasome, whereas further phosphorylation of tau inhibited the activity of the protease in HEK293 cells stably expressing tau441. Furthermore, tau hyperphosphorylation could partially reverse lactacystin-induced inhibition of proteasome. These results suggest that phosphorylation of tau plays a dual role in modulating the activity of proteasome.  相似文献   
13.
阿尔茨海默氏症(Alzheimer's disease,AD)是一种退行性神经系统疾病。许多已知的AD危险因素都与胆固醇的代谢有关。大量研究发现,胆固醇代谢异常与该病神经变性的机制相关。本文主要综述了近年来关于胆固醇在脑内的代谢过程及其与AD相关因素关系的研究进展。  相似文献   
14.
Alzheimer’s disease (AD) is a multifaceted neurodegenerative disorder affecting the elderly people. For the AD treatment, there is inefficiency in the existing medication, as these drugs reduce only the symptoms of the disease. Since multiple pathological proteins are involved in the development of AD, searching for a single molecule targeting multiple AD proteins will be a new strategy for the management of AD. In view of this, the present study was designed to synthesize and evaluate the multifunctional neuroprotective ability of the sesquiterpene glycoside α-bisabolol β-D-fucopyranoside (ABFP) against multiple targets like acetylcholinesterase, oxidative stress and β-amyloid peptide aggregation induced cytotoxicity. In silico computational docking and simulation studies of ABFP with acetylcholinesterase (AChE) showed that it can interact with Asp74 and Thr75 residues of the enzyme. The in vitro studies showed that the compound possess significant ability to inhibit the AChE enzyme apart from exhibiting antioxidant, anti-aggregation and disaggregation properties. In addition, molecular dynamics simulation studies proved that the interacting residue between Aβ peptide and ABFP was found to be involved in Leu34 and Ile31. Furthermore, the compound was able to protect the Neuro2 a cells against Aβ25-35 peptide induced toxicity. Overall, the present study evidently proved ABFP as a neuroprotective agent, which might act as a multi-target compound for the treatment of Alzheimer’s disease.  相似文献   
15.
The chemokine receptor CXCR2 and its ligands are implicated in the progression of tumours and various inflammatory diseases. Activation of the CXCLs/CXCR2 axis activates multiple signalling pathways, including the PI3K, p38/ERK, and JAK pathways, and regulates cell survival and migration. The CXCLs/CXCR2 axis plays a vital role in the tumour microenvironment and in recruiting neutrophils to inflammatory sites. Extensive infiltration of neutrophils during chronic inflammation is one of the most important pathogenic factors in various inflammatory diseases. Chronic inflammation is considered to be closely correlated with initiation of cancer. In addition, immunosuppressive effects of myeloid-derived suppressor cells (MDSCs) against T cells attenuate the anti-tumour effects of T cells and promote tumour invasion and metastasis. Over the last several decades, many therapeutic strategies targeting CXCR2 have shown promising results and entered clinical trials. In this review, we focus on the features and functions of the CXCLs/CXCR2 axis and highlight its role in cancer and inflammatory diseases. We also discuss its potential use in targeted therapies.  相似文献   
16.
Increasing numbers of cancer patients survive and live longer than five years after therapy, but very often side effects of cancer treatment arise at same time. One of the side effects, chemotherapy-induced cognitive impairment (CICI), also called “chemobrain” or “chemofog” by patients, brings enormous challenges to cancer survivors following successful chemotherapeutic treatment. Decreased abilities of learning, memory, attention, executive function and processing speed in cancer survivors with CICI, are some of the challenges that greatly impair survivors' quality of life. The molecular mechanisms of CICI involve very complicated processes, which have been the subject of investigation over the past decades. Many mechanistic candidates have been studied including disruption of the blood-brain barrier (BBB), DNA damage, telomere shortening, oxidative stress and associated inflammatory response, gene polymorphism of neural repair, altered neurotransmission, and hormone changes. Oxidative stress is considered as a vital mechanism, since over 50% of FDA-approved anti-cancer drugs can generate reactive oxygen species (ROS) or reactive nitrogen species (RNS), which lead to neuronal death. In this review paper, we discuss these important candidate mechanisms, in particular oxidative stress and the cytokine, TNF-alpha and their potential roles in CICI.  相似文献   
17.
Synucleinopathies comprise a diverse group of neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. These share a common pathological feature, the deposition of alpha-synuclein (a-syn) in neurons or oligodendroglia. A-syn is highly conserved in vertebrates, but the primary sequence of mouse a-syn differs from that of human at seven positions. However, structural differences of their aggregates remain to be fully characterized. In this study, we found that human and mouse a-syn aggregated in vitro formed morphologically distinct amyloid fibrils exhibiting twisted and straight structures, respectively. Furthermore, we identified different protease-resistant core regions, long and short, in human and mouse a-syn aggregates. Interestingly, among the seven unconserved amino acids, only A53T substitution, one of the familial PD mutations, was responsible for structural conversion to the straight-type. Finally, we checked whether the structural differences are transmissible by seeding and found that human a-syn seeded with A53T aggregates formed straight-type fibrils with short protease-resistant cores. These results suggest that a-syn aggregates form sequence-dependent polymorphic fibrils upon spontaneous aggregation but become seed structure-dependent upon seeding.  相似文献   
18.
施卫萍  季加忠 《现代生物医学进展》2007,7(12):1863-1864,1870
目的:通过对营养性缺铁性贫血与注意缺陷多动障碍的病例研究,探讨两者之间的关系。方法:对258例NIDA的病因、临床表现和治疗进行临床分析,包括其中的31例中重度ADHD。结果:本组NIDA患儿病因主要为未及时添加富铁辅食、饮食结构不合理、消化道疾病、鼻衄等,临床主要表现为头晕、乏力、注意力不集中、记忆力减退等,对患者进行病因治疗以及服用生血宁片;ADHD的病因不明,临床表现为注意力不集中、活动过度、行为冲动等,通过综合治疗可以改善症状。NIDA的患儿ADHD的发病率较正常儿童为高。结论:NIDA与ADHD的关系密切。  相似文献   
19.
By the elucidation of high-resolution structures the view of the bioenergetic processes has become more precise. But in the face of these fundamental advances, many problems are still unresolved. We have examined a variety of aspects of energy-transducing membranes from large protein complexes down to the level of protons and functional relevant picosecond protein dynamics. Based on the central role of the ATP synthase for supplying the biological fuel ATP, one main emphasis was put on this protein complex from both chloroplast and mitochondria. In particular the stoichiometry of protons required for the synthesis of one ATP molecule and the supramolecular organisation of ATP synthases were examined. Since formation of supercomplexes also concerns other complexes of the respiratory chain, our work was directed to unravel this kind of organisation, e.g. of the OXPHOS supercomplex I1III2IV1, in terms of structure and function. Not only the large protein complexes or supercomplexes work as key players for biological energy conversion, but also small components as quinones which facilitate the transfer of electrons and protons. Therefore, their location in the membrane profile was determined by neutron diffraction. Physico-chemical features of the path of protons from the generators of the electrochemical gradient to the ATP synthase, as well as of their interaction with the membrane surface, could be elucidated by time-resolved absorption spectroscopy in combination with optical pH indicators. Diseases such as Alzheimer's dementia (AD) are triggered by perturbation of membranes and bioenergetics as demonstrated by our neutron scattering studies.  相似文献   
20.
Liu F  Liang Z  Shi J  Yin D  El-Akkad E  Grundke-Iqbal I  Iqbal K  Gong CX 《FEBS letters》2006,580(26):6269-6274
Phosphorylation of tau protein is regulated by several kinases, especially glycogen synthase kinase 3beta (GSK-3beta), cyclin-dependent protein kinase 5 (cdk5) and cAMP-dependent protein kinase (PKA). Phosphorylation of tau by PKA primes it for phosphorylation by GSK-3beta, but the site-specific modulation of GSK-3beta-catalyzed tau phosphorylation by the prephosphorylation has not been well investigated. Here, we found that prephosphorylation by PKA promotes GSK-3beta-catalyzed tau phosphorylation at Thr181, Ser199, Ser202, Thr205, Thr217, Thr231, Ser396 and Ser422, but inhibits its phosphorylation at Thr212 and Ser404. In contrast, the prephosphorylation had no significant effect on its subsequent phosphorylation by cdk5 at Thr181, Ser199, Thr205, Thr231 and Ser422; inhibited it at Ser202, Thr212, Thr217 and Ser404; and slightly promoted it at Ser396. These studies reveal the nature of the inter-regulation of tau phosphorylation by the three major tau kinases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号