首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1043篇
  免费   32篇
  国内免费   37篇
  2024年   2篇
  2023年   17篇
  2022年   22篇
  2021年   21篇
  2020年   19篇
  2019年   58篇
  2018年   51篇
  2017年   23篇
  2016年   16篇
  2015年   34篇
  2014年   116篇
  2013年   109篇
  2012年   61篇
  2011年   71篇
  2010年   42篇
  2009年   50篇
  2008年   35篇
  2007年   43篇
  2006年   24篇
  2005年   37篇
  2004年   27篇
  2003年   29篇
  2002年   26篇
  2001年   16篇
  2000年   16篇
  1999年   16篇
  1998年   16篇
  1997年   24篇
  1996年   12篇
  1995年   9篇
  1994年   7篇
  1993年   11篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   6篇
  1988年   5篇
  1987年   5篇
  1986年   1篇
  1985年   13篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
排序方式: 共有1112条查询结果,搜索用时 15 毫秒
11.
12.
  1. Download : Download high-res image (327KB)
  2. Download : Download full-size image
  相似文献   
13.
Circular RNAs (circRNAs) has been shown to play an important role in the progression of various cancers. However, the function and underlying mechanisms of circRNAs affecting chemotherapy resistance in esophageal squamous cell carcinoma (ESCC) remain largely unknown. In this study, we used gefitinib-resistant (GR) ESCC cells to investigate the function of circPSMC3 and clarify the underlying mechanism in chemotherapy resistance in ESCC. The results suggested that circPSMC3 expression was downregulated, but miR-10a-5p was upregulated in ESCC tissues and cells, as well as in GR ESCC cells. CircPSMC3 overexpression increased the sensitivity of ESCC cells to gefitinib, as indicated by reduced half maximal inhibitory concentration value, increased apoptosis rate and cleaved caspase-3 protein expression. CircPSMC3 directly interacted with miR-10a-5p and inhibited the expression of miR-10a-5p. Phosphatase and tensin homolog (PTEN) was a direct target of miR-10a-5p and circPSMC3 promoted PTEN expression via decreasing miR-10a-5p level. Moreover, the effect of circPSMC3 on resistance of GR ESCC cells to gefitinib was remarkably reduced by restoration of miR-10a-5p and downregultion of PTEN. Taken together, these observations suggested that upregulation of circPSMC3 overcame resistance of GR ESCC cells to gefitinib by modulating the miR-10a-5p/PTEN axis, which provide a new therapeutic strategy for overcoming gefitinib resistance in ESCC.  相似文献   
14.
Adult human dental pulp stem cells (hDPSCs) are a unique population of precursor cells those are isolated from postnatal dental pulp and have the ability to differentiate into a variety of cell types utilized for the formation of a reparative dentin-like complex. Using LC-MS/MS proteomics approaches, we identified the proteins secreted from the differentiating hDPSCs in mineralization media. Lysyl oxidase-like 2 (LOXL2) was identified as a protein that was down-regulated in the hDPSCs that differentiate into odontoblast-like cells. The role of LOXL2 has not been studied in dental pulp stem cells. LOXL2 mRNA levels were reduced in differentiating hDPSCs, whereas the levels of other LOX family members including LOX, LOXL1, LOXL3, and LOXL4, are increased. The protein expression and secretion levels of LOXL2 were also decreased during odontogenic differentiation. Recombinant LOXL2 protein treatment to hDPSCs resulted in a dose-dependent decrease in the early differentiation and the mineralization accompanying with the lower levels of odontogenic markers such as DSPP, DMP-1 and ALP. These results suggest that LOXL2 has a negative effect on the differentiation of hDPSCs and blocking LOXL2 can promote the hDPSC differentiation to odontoblasts.  相似文献   
15.
Mesenchymal stem cells are an attractive source of multipotent cells in part because they are easy to obtain. Several E3 ligases regulate the stability and functions of various factors in different adult stem cells through the ubiquitylation pathway. We investigated the C-terminus of Hsc70-interacting protein (CHIP) E3 ligase that regulates pluripotency of human Wharton’s jelly mesenchymal stem cells (hWJMSC). We found that CHIP increases protein kinase B (Akt) phosphorylation by decreased expression of phosphatase and tensin homolog (PTEN), which suggests improvement of the survival pathway by CHIP over-expression. We also found that increased CHIP expression induced Sox2 and NANOG, which can promote stem cell self-renewal and prevent oxidative stress-induced senescence of hWJMSC by decreased p21. We found that CHIP could be used to enhance the multiple functions of hWJMSC.  相似文献   
16.
Sphingosine-1-phosphate (S1P) is a pleiotropic lipid mediator that acts either on G protein-coupled S1P receptors on the cell surface or via intracellular target sites. In addition to the well established effects of S1P in angiogenesis, carcinogenesis and immunity, evidence is now continuously accumulating which demonstrates that S1P is an important regulator of fibrosis. The contribution of S1P to fibrosis is of a Janus-faced nature as S1P exhibits both pro- and anti-fibrotic effects depending on its site of action. Extracellular S1P promotes fibrotic processes in a S1P receptor-dependent manner, whereas intracellular S1P has an opposite effect and dampens a fibrotic reaction by yet unidentified mechanisms. Fibrosis is a result of chronic irritation by various factors and is defined by an excess production of extracellular matrix leading to tissue scarring and organ dysfunction. In this review, we highlight the general effects of extracellular and intracellular S1P on the multistep cascade of pathological fibrogenesis including tissue injury, inflammation and the action of pro-fibrotic cytokines that stimulate ECM production and deposition. In a second part we summarize the current knowledge about the involvement of S1P signaling in the development of organ fibrosis of the lung, kidney, liver, heart and skin. Altogether, it is becoming clear that targeting the sphingosine kinase-1/S1P signaling pathway offers therapeutic potential in the treatment of various fibrotic processes. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   
17.
DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within which they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye toward how these pathways may regulate the development of neurological disease.  相似文献   
18.
Glioblastoma is the most common and aggressive brain tumor type, with a mean patient survival of approximately 1 year. Many previous analyses of the glioma kinome have identified key deregulated pathways that converge and activate mammalian target of rapamycin (mTOR). Following the identification and characterization of mTOR-promoting activity in gliomagenesis, data from preclinical studies suggested the targeting of mTOR by rapamycin or its analogs (rapalogs) as a promising therapeutic approach. However, clinical trials with rapalogs have shown very limited efficacy on glioma due to the development of resistance mechanisms. Analysis of rapalog-insensitive glioma cells has revealed increased activity of growth and survival pathways compensating for mTOR inhibition by rapalogs that are suitable for therapeutic intervention. In addition, recently developed mTOR inhibitors show high anti-glioma activity. In this review, we recapitulate the regulation of mTOR signaling and its involvement in gliomagenesis, discuss mechanisms resulting in resistance to rapalogs, and speculate on strategies to overcome resistance. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号