首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   1篇
  国内免费   1篇
  2021年   3篇
  2020年   2篇
  2018年   6篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   12篇
  2012年   6篇
  2011年   6篇
  2010年   6篇
  2009年   8篇
  2008年   6篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  1999年   1篇
  1994年   1篇
  1992年   3篇
  1979年   1篇
排序方式: 共有83条查询结果,搜索用时 62 毫秒
11.
The Niemann‐Pick C1 and C2 (NPC1 and NPC2) proteins have a central role in regulating the transport of lipoprotein‐derived cholesterol from endocytic compartments to the endoplasmic reticulum for esterification by acyl‐CoA:cholesterol acyltransferase (ACAT) and feedback inhibition of the sterol regulatory element‐binding protein (SREBP) pathway. Since the NPC1 gene/protein has recently been shown to be downregulated by feedback inhibition of the SREBP pathway, the present study was performed to determine whether physiological downregulation of the NPC1 gene/protein alters the transport and metabolism of low‐density lipoprotein (LDL)‐derived cholesterol in human fibroblasts. To perform this study, three different culture conditions were used that included fibroblasts grown in lipoprotein‐deficient serum (LPDS), LPDS supplemented with LDL, and LPDS supplemented with LDL, followed by equilibration in the absence of LDL to allow the transport of LDL‐derived cholesterol from endocytic compartments and equilibration of cellular sterol pools. The results from this study indicated that in addition to the NPC1 gene/protein, the NPC2 gene/protein was also downregulated by LDL‐derived cholesterol‐dependent feedback inhibition and that downregulation of both the NPC1 and NPC2 genes/proteins was associated with the sequestration of LDL‐derived cholesterol within endocytic compartments, including late endosomes/lysosomes after equilibration. Therefore, it is proposed that physiological and coordinate downregulation of the NPC1 and NPC2 genes/proteins promotes the sequestration of LDL‐derived cholesterol within endocytic compartments and serves a role in maintaining intracellular cholesterol homeostasis. J. Cell. Biochem. 108: 1102–1116, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
12.
We review the cellular mechanisms implicated in cholesterol trafficking and distribution. Recent studies have provided new information about the distribution of sterols within cells, including analysis of its transbilayer distribution. The cholesterol interaction with other lipids and its engagement in various trafficking processes will determine its proper level in a specific membrane; making the cholesterol distribution uneven among the various intracellular organelles. The cholesterol content is important since cholesterol plays an essential role in membranes by controlling their physicochemical properties as well as key cellular events such as signal transduction and protein trafficking. Cholesterol movement between cellular organelles is highly dynamic, and can be achieved by vesicular and non-vesicular processes. Various studies have analyzed the proteins that play a significant role in these processes, giving us new information about the relative importance of these two trafficking pathways in cholesterol transport. Although still poorly characterized in many trafficking routes, several potential sterol transport proteins have been described in detail; as a result, molecular mechanisms for sterol transport among membranes start to be appreciated.  相似文献   
13.
The enzymes of the acyl-coenzyme A:cholesterol acyltransferase (ACAT) family are responsible for the in vivo synthesis of neutral lipids.They are potential drug targets for the intervention of atherosclerosis,hyperlipidemia,obesity,type Ⅱ diabetes and even Alzheimer's disease.ACAT family enzymes are integral endoplasmic reticulum (ER) membrane proteins and can be divided into ACAT branch and acyl-coenzyme A:diacylglycerol acyltransferase 1 (DGATI) branch according to their substrate specificity.The ACAT branch catalyzes synthesis of cholesteryl esters using long-chain fatty acyl-coenzyme A and cholesterol as substrates,while the DGAT1 branch catalyzes synthesis of triacylglycerols using fatty acylcoenzyme A and diacylglycerol as substrates.In this review,we mainly focus on the recent progress in the structural research of ACAT family enzymes,including their disulfide linkage,membrane topology,subunit interaction and catalysis mechanism.  相似文献   
14.
Human carboxylesterase 1 (hCE1) is a drug and endobiotic-processing serine hydrolase that exhibits relatively broad substrate specificity. It has been implicated in a variety of endogenous cholesterol metabolism pathways including the following apparently disparate reactions: cholesterol ester hydrolysis (CEH), fatty acyl Coenzyme A hydrolysis (FACoAH), acyl-Coenzyme A:cholesterol acyltransfer (ACAT), and fatty acyl ethyl ester synthesis (FAEES). The structural basis for the ability of hCE1 to perform these catalytic actions involving large substrates and products has remained unclear. Here we present four crystal structures of the hCE1 glycoprotein in complexes with the following endogenous substrates or substrate analogues: Coenzyme A, the fatty acid palmitate, and the bile acids cholate and taurocholate. While the active site of hCE1 was known to be promiscuous and capable of interacting with a variety of chemically distinct ligands, these structures reveal that the enzyme contains two additional ligand-binding sites and that each site also exhibits relatively non-specific ligand-binding properties. Using this multisite promiscuity, hCE1 appears structurally capable of assembling several catalytic events depending, apparently, on the physiological state of the cellular environment. These results expand our understanding of enzyme promiscuity and indicate that, in the case of hCE1, multiple non-specific sites are employed to perform distinct catalytic actions.  相似文献   
15.
The interface between mitochondria and the endoplasmic reticulum is emerging as a crucial hub for calcium signalling, apoptosis, autophagy and lipid biosynthesis, with far reaching implications in cell life and death and in the regulation of mitochondrial and endoplasmic reticulum function. Here we review our current knowledge on the structural and functional aspects of this interorganellar juxtaposition. This article is part of a Special Issue entitled: Calcium Signaling In Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   
16.
We have previously proposed that catabolic fibroblasts generate mitochondrial fuels (such as ketone bodies) to promote the anabolic growth of human cancer cells and their metastasic dissemination. We have termed this new paradigm “two-compartment tumor metabolism.” Here, we further tested this hypothesis by using a genetic approach. For this purpose, we generated hTERT-immortalized fibroblasts overexpressing the rate-limiting enzymes that promote ketone body production, namely BDH1 and HMGCS2. Similarly, we generated MDA-MB-231 human breast cancer cells overexpressing the key enzyme(s) that allow ketone body re-utilization, OXCT1/2 and ACAT1/2. Interestingly, our results directly show that ketogenic fibroblasts are catabolic and undergo autophagy, with a loss of caveolin-1 (Cav-1) protein expression. Moreover, ketogenic fibroblasts increase the mitochondrial mass and growth of adjacent breast cancer cells. However, most importantly, ketogenic fibroblasts also effectively promote tumor growth, without a significant increase in tumor angiogenesis. Finally, MDA-MB-231 cells overexpressing the enzyme(s) required for ketone re-utilization show dramatic increases in tumor growth and metastatic capacity. Our data provide the necessary genetic evidence that ketone body production and re-utilization drive tumor progression and metastasis. As such, ketone inhibitors should be designed as novel therapeutics to effectively treat advanced cancer patients, with tumor recurrence and metastatic disease. In summary, ketone bodies behave as onco-metabolites, and we directly show that the enzymes HMGCS2, ACAT1/2 and OXCT1/2 are bona fide metabolic oncogenes.  相似文献   
17.
Although singly ablating Fabp1 or Scp2/Scpx genes may exacerbate the impact of high fat diet (HFD) on whole body phenotype and non-alcoholic fatty liver disease (NAFLD), concomitant upregulation of the non-ablated gene, preference for ad libitum fed HFD, and sex differences complicate interpretation. Therefore, these issues were addressed in male and female mice ablated in both genes (Fabp1/Scp2/Scpx null or TKO) and pair-fed HFD. Wild-type (WT) males gained more body weight as fat tissue mass (FTM) and exhibited higher hepatic lipid accumulation than WT females. The greater hepatic lipid accumulation in WT males was associated with higher hepatic expression of enzymes in glyceride synthesis, higher hepatic bile acids, and upregulation of transporters involved in hepatic reuptake of serum bile acids. While TKO had little effect on whole body phenotype and hepatic bile acid accumulation in either sex, TKO increased hepatic accumulation of lipids in both, specifically phospholipid and cholesteryl esters in males and females and free cholesterol in females. TKO-induced increases in glycerides were attributed not only to complete loss of FABP1, SCP2 and SCPx, but also in part to sex-dependent upregulation of hepatic lipogenic enzymes. These data with WT and TKO mice pair-fed HFD indicate that: i) Sex significantly impacted the ability of HFD to increase body weight, induce hepatic lipid accumulation and increase hepatic bile acids; and ii) TKO exacerbated the HFD ability to induce hepatic lipid accumulation, regardless of sex, but did not significantly alter whole body phenotype in either sex.  相似文献   
18.
We recently reported that lecithin:cholesterol acyltransferase (LCAT) knock-out mice, particularly in the LDL receptor knock-out background, are hypersensitive to insulin and resistant to high fat diet-induced insulin resistance (IR) and obesity. We demonstrated that chow-fed Ldlr-/-xLcat+/+ mice have elevated hepatic endoplasmic reticulum (ER) stress, which promotes IR, compared with wild-type controls, and this effect is normalized in Ldlr-/-xLcat-/- mice. In the present study, we tested the hypothesis that hepatic ER cholesterol metabolism differentially regulates ER stress using these models. We observed that the Ldlr-/-xLcat+/+ mice accumulate excess hepatic total and ER cholesterol primarily attributed to increased reuptake of biliary cholesterol as we observed reduced biliary cholesterol in conjunction with decreased hepatic Abcg5/g8 mRNA, increased Npc1l1 mRNA, and decreased Hmgr mRNA and nuclear SREBP2 protein. Intestinal NPC1L1 protein was induced. Expression of these genes was reversed in the Ldlr-/-xLcat-/- mice, accounting for the normalization of total and ER cholesterol and ER stress. Upon feeding a 2% high cholesterol diet (HCD), Ldlr-/-xLcat-/- mice accumulated a similar amount of total hepatic cholesterol compared with the Ldlr-/-xLcat+/+ mice, but the hepatic ER cholesterol levels remained low in conjunction with being protected from HCD-induced ER stress and IR. Hepatic ER stress correlates strongly with hepatic ER free cholesterol but poorly with hepatic tissue free cholesterol. The unexpectedly low ER cholesterol seen in HCD-fed Ldlr-/-xLcat-/- mice was attributable to a coordinated marked up-regulation of ACAT2 and suppressed SREBP2 processing. Thus, factors influencing the accumulation of ER cholesterol may be important for the development of hepatic insulin resistance.  相似文献   
19.
豚鼠高脂血症模型的建立及机制探讨   总被引:2,自引:1,他引:1  
目的建立豚鼠高脂血症模型,探讨模型形成机制并与大鼠模型进行比较。方法豚鼠模型和大鼠模型1组用低胆固醇(0.1%)饲料诱导,大鼠模型2组用高胆固醇(1%)饲料诱导,连续诱导4周。第3、4周分别取血测定血清脂质水平及CETP表达,4周末剖取肝脏检测肝脏FC、TG、ACAT、CYP7A1等指标。动态观察两种动物形成高脂血症状况。结果与对照组比较,豚鼠模型组于第3周血清TC、LDL-C、TG分别升高3.92倍、3.75倍和1.24倍,4周末血清CETP表达、肝脏ACAT活性明显增加,但肝CYP7A1水平变化不大。大鼠模型1组经低胆固醇饲料诱导4周,血脂水平变化不明显,模型2组经高胆固醇饲料诱导于第3周血清TC、LDL-C分别升高1.24倍和1.54倍,明显低于同期豚鼠模型组,4周末大鼠两个模型组肝CYP7A1活性显著增强,血清TG、CETP水平、肝ACAT活性均未见明显变化。结论豚鼠对高脂饲料较大鼠敏感,是一种比大鼠更理想的高血脂模型动物,模型形成机制与血清CETP表达、肝ACAT及CYP7A1活性变化密切相关。  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号