首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32449篇
  免费   1239篇
  国内免费   1039篇
  2023年   783篇
  2022年   749篇
  2021年   1016篇
  2020年   1102篇
  2019年   1492篇
  2018年   1352篇
  2017年   913篇
  2016年   981篇
  2015年   841篇
  2014年   2172篇
  2013年   3276篇
  2012年   1186篇
  2011年   1656篇
  2010年   1272篇
  2009年   1290篇
  2008年   1333篇
  2007年   1433篇
  2006年   1218篇
  2005年   1104篇
  2004年   948篇
  2003年   756篇
  2002年   652篇
  2001年   387篇
  2000年   352篇
  1999年   349篇
  1998年   307篇
  1997年   280篇
  1996年   282篇
  1995年   255篇
  1994年   234篇
  1993年   207篇
  1992年   204篇
  1991年   203篇
  1990年   162篇
  1989年   148篇
  1988年   114篇
  1987年   121篇
  1985年   308篇
  1984年   436篇
  1983年   333篇
  1982年   356篇
  1981年   309篇
  1980年   332篇
  1979年   235篇
  1978年   196篇
  1977年   214篇
  1976年   220篇
  1975年   167篇
  1974年   137篇
  1973年   117篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
41.
Chemical tools capable of detecting ferrous iron with oxidation-state specificity have only recently become available. Coincident with this development in chemical biology has been increased study and appreciation for the importance of ferrous iron during infection and more generally in host–pathogen interaction. Some of the recent findings are surprising and challenge long-standing assumptions about bacterial iron homeostasis and the innate immune response to infection. Here, we review these recent developments and their implications for antibacterial therapy.  相似文献   
42.
Cultural adherent human mononuclear cells produce factor(s) which stimulate the release of calcium from new-born mouse calvaria in organ culture. This stimulation of bone resorption is accompanied by an inhibition of the incorporation of [3H]proline into collagen which is independent of increased prostaglandin production by the bone. When human osteoblast-like cells are treated with conditioned medium from human mononuclear cells, collagen accounts for a decreased proportion of the protein synthesised. This effect on matrix synthesis is not accompanied by an inhibitory action of the monocyte-conditioned medium preparations on net cell proliferation. In human osteoblast-like cell cultures, partially purified human interleukin 1 also inhibits the production of the bone-specific protein osteocalcin in a dose-dependent fashion. These observations are consistent with the hypothesis that products of human monocytes similar to, or identical with, human interleukin 1 may be important regulators of bone metabolism and may contribute to the bone loss seen in diseases such as chronic rheumatoid arthritis.  相似文献   
43.
Summary Comparative evaluation of Kranjin and three patented nitrification inhibitors for retardation of nitrification of urea in a sandy clay loam showed that the effectiveness of the compounds tested decreased in the order: Nitrapyrin>Karanjin>A.M.>dicyandiamide.  相似文献   
44.
Computer-aided antibody engineering has been successful in the design of new biologics for disease diagnosis and therapeutic interventions. Interleukin-6 (IL-6), a well-recognized drug target for various autoimmune and inflammatory diseases such as rheumatoid arthritis, multiple sclerosis, and psoriasis, was investigated in silico to design potential lead antibodies. Here, crystal structure of IL-6 along with monoclonal antibody olokizumab was explored to predict antigen–antibody (Ag???Ab)-interacting residues using DiscoTope, Paratome, and PyMOL. Tyr56, Tyr103 in heavy chain and Gly30, Ile31 in light chain of olokizumab were mutated with residues Ser, Thr, Tyr, Trp, and Phe. A set of 899 mutant macromolecules were designed, and binding affinity of these macromolecules to IL-6 was evaluated through Ag???Ab docking (ZDOCK, ClusPro, and Rosetta server), binding free-energy calculations using Molecular Mechanics/Poisson Boltzman Surface Area (MM/PBSA) method, and interaction energy estimation. In comparison to olokizumab, eight newly designed theoretical antibodies demonstrated better result in all assessments. Therefore, these newly designed macromolecules were proposed as potential lead antibodies to serve as a therapeutics option for IL-6-mediated diseases.  相似文献   
45.
A differential screening study using high-resolution (HR)-hydrophilic interaction chromatography (HILIC)-electrospray ionization (ESI)–quadrupole time-of-flight mass spectrometry (Q-TOF MS) was conducted to identify saxitoxin (STX) analogues in the marine dinoflagellate toxic sub-clone Alexandrium tamarense Axat-2 and the non-toxic sub-clone UAT-014-009 derived from the same Japanese isolate. One unknown compound was identified only in the toxic sub-clone and was found to have the molecular formula C9H16N6O2. This structure differed from that of decarbamoyl STX (dcSTX; C9H16N6O3) by the loss of a single oxygen. A 12-deoxy-dcSTX standard (a mixture of 12α- and β-deoxy-dcSTX) was chemically prepared from dcSTX by reduction with sodium borohydride. The unknown compound in the toxic strain of A. tamarense was identified as 12β-deoxy-dcSTX by comparison of its HR-HILIC-LC–MS retention time and HR–MS/MS spectrum with those of the chemically prepared standard, and the identification was confirmed by high-sensitivity HPLC analysis with post-column fluorescent derivatization. Moreover, two Japanese isolates of A. catenella showing toxin profiles different from that of A. tamarense were also found to contain 12β-deoxy-dcSTX. Previously, 12β-deoxy-dcSTX was isolated from the freshwater cyanobacterium Lyngbya wollei, which produces a unique set of STX analogues. This study is the first evidence of the presence of 12β-deoxy-dcSTX in marine dinoflagellates.  相似文献   
46.
47.
Although several p53–Mdm2-binding disruptors have been identified to date, few studies have been published on p53–Mdmx-interaction inhibitors. In the present study, we demonstrated that o-aminothiophenol derivatives with molecular weights of 200–300 selectively inhibited the p53–Mdmx interaction. S-2-Isobutyramidophenyl 2-methylpropanethioate (K-178) (1c) activated p53, up-regulated the expression of its downstream genes such as p21 and Mdm2, and preferentially inhibited the growth of cancer cells with wild-type p53 over those with mutant p53. Furthermore, we found that the S-isobutyryl-deprotected forms 1b and 3b of 1c and S-2-benzamidophenyl 2-methylpropanethioate (K-181) (3c) preferentially inhibited the p53–Mdmx interaction over the p53–Mdm2 interaction, respectively, by using a Flag-p53 and glutathione S-transferase (GST)-fused protein complex (Mdm2, Mdmx, DAPK1, or PPID). In addition, the interaction of p53 with Mdmx was lost by replacing a sulfur atom with an oxygen atom in 1b and 1c. These results suggest that sulfides such as 1b, 3b, 4b, and 5b interfere with the binding of p53–Mdmx, resulting in the dissociation of the two proteins. Furthermore, the results of oral administration experiments using xenografts in nude mice indicated that 1c reduced the volume of tumor masses to 49.0% and 36.6% that of the control at 100 mg/kg and 150 mg/kg, respectively, in 40 days.  相似文献   
48.
Cardiolipin (CL) is responsible for modulation of activities of various enzymes involved in oxidative phosphorylation. Although energy production decreases in heart failure (HF), regulation of cardiolipin during HF development is unknown. Enzymes involved in cardiac cardiolipin synthesis and remodeling were studied in spontaneously hypertensive HF (SHHF) rats, explanted hearts from human HF patients, and nonfailing Sprague Dawley (SD) rats. The biosynthetic enzymes cytidinediphosphatediacylglycerol synthetase (CDS), phosphatidylglycerolphosphate synthase (PGPS) and cardiolipin synthase (CLS) were investigated. Mitochondrial CDS activity and CDS-1 mRNA increased in HF whereas CDS-2 mRNA in SHHF and humans, not in SD rats, decreased. PGPS activity, but not mRNA, increased in SHHF. CLS activity and mRNA decreased in SHHF, but mRNA was not significantly altered in humans. Cardiolipin remodeling enzymes, monolysocardiolipin acyltransferase (MLCL AT) and tafazzin, showed variable changes during HF. MLCL AT activity increased in SHHF. Tafazzin mRNA decreased in SHHF and human HF, but not in SD rats. The gene expression of acyl-CoA: lysocardiolipin acyltransferase-1, an endoplasmic reticulum MLCL AT, remained unaltered in SHHF rats. The results provide mechanisms whereby both cardiolipin biosynthesis and remodeling are altered during HF. Increases in CDS-1, PGPS, and MLCL AT suggest compensatory mechanisms during the development of HF. Human and SD data imply that similar trends may occur in human HF, but not during nonpathological aging, consistent with previous cardiolipin studies.  相似文献   
49.
BackgroundSevere acute pancreatitis (SAP) is associated with high morbidity and mortality. Bone marrow mesenchymal stem cells (BMSCs) have shown obvious protective effect on SAP. However, little is known about the underlying mechanism. The objective of this study is to unravel the role and regulatory mechanism of miR-181a-5p in BMSCs-mediated pancreatic repair.MethodsBMSCs were isolated from Sprague-Dawley rats and characterized by flow cytometry and Oil Red O staining. Sodium taurocholate- and caerulein-induced models were used as SAP models in vivo and in vitro, respectively. Pancreatic injury were evaluated by H&E and histopathological analysis, as well as by measuring levels of amylase, lipase and cytokines. qRT-PCR and western blotting were performed to detect the level of miR-181a-5p and the protein levels of PTEN/Akt, respectively. ELISA was conducted to detect the levels of TNF-α, IL-1β, IL-6, angiopoietin, IL-4, IL-10 and TGF-β1. The apoptotic rate of AR42 J cells was quantitated by concurrent staining with Annexin-V-FITC and PI.ResultsBMSCs significantly attenuated pancreatic injury in SAP rats by reducing inflammatory infiltration and necrosis, and this effect was abolished by CXCR4 agonist AMD3100. ADM3100 exhibited more severe pancreatic injury and decreased miR-181a-5p levels in the pancreas and serum compared to SAP group. Overexpression of miR-181a-5p in BMSCs (BMSCs-miR-181a-5p) markedly potentiated the protective effect of BMSCs by reducing histological damage and levels of amylase and lipase. Moreover, BMSCs-miR-181a-5p dramatically reduced levels of angiopoietin, TNF-α, IL-1β and IL-6, but induced the levels of IL-4 and IL-10. In caerulein-treated AR42 J cells, co-culturing of BMSCs-miR-181a-5p alleviated caerulein-induced increase of amylase and lipase, and apoptosis via PTEN/Akt/TGF-β1 signaling.ConclusionBMSCs alleviate SAP and reduce inflammatory responses and apoptosis by secreting miR-181a-5p to target PTEN/Akt/TGF-β1 signaling. Hence, BMSCs-miR-181a-5p could serve as potential therapeutic target for SAP.  相似文献   
50.
Abstract cDNA-RNA liquid hybridization analysis was used to compare the RNA sequence homology between two members of the Nudaurelia β virus family, Trichoplusia ni virus ( T.ni V) and Dasychira pudibunda virus ( D.p V). Heterologous hybridization experiments demonstrated that these viruses shared little sequence homology. Using oligo(dT) chromatography and oligo(dT)12–18 as a primer for cDNA synthesis it was shown that neither T.ni V nor D.p V RNA genomes possess a poly(A) tract at the 3' end.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号