首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   9篇
  国内免费   24篇
  2023年   2篇
  2022年   1篇
  2021年   9篇
  2020年   6篇
  2019年   6篇
  2018年   3篇
  2017年   4篇
  2016年   7篇
  2015年   88篇
  2014年   10篇
  2013年   16篇
  2012年   7篇
  2011年   12篇
  2010年   6篇
  2009年   9篇
  2008年   4篇
  2007年   8篇
  2006年   7篇
  2005年   9篇
  2004年   11篇
  2003年   8篇
  2002年   9篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1987年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有264条查询结果,搜索用时 109 毫秒
91.
The glass-supported planar lipid bilayer system has been utilized in a variety of disciplines. One of the most useful applications of this technique has been in the study of immunological synapse formation, due to the ability of the glass-supported planar lipid bilayers to mimic the surface of a target cell while forming a horizontal interface. The recent advances in super-resolution imaging have further allowed scientists to better view the fine details of synapse structure. In this study, one of these advanced techniques, stimulated emission depletion (STED), is utilized to study the structure of natural killer (NK) cell synapses on the supported lipid bilayer. Provided herein is an easy-to-follow protocol detailing: how to prepare raw synthetic phospholipids for use in synthesizing glass-supported bilayers; how to determine how densely protein of a given concentration occupies the bilayer''s attachment sites; how to construct a supported lipid bilayer containing antibodies against NK cell activating receptor CD16; and finally, how to image human NK cells on this bilayer using STED super-resolution microscopy, with a focus on distribution of perforin positive lytic granules and filamentous actin at NK synapses. Thus, combining the glass-supported planar lipid bilayer system with STED technique, we demonstrate the feasibility and application of this combined technique, as well as intracellular structures at NK immunological synapse with super-resolution.  相似文献   
92.
The Her2 is one of tumor-associated antigens (TAA), regarded as an ideal target of immunotherapy. DNA encoding full-length or truncated rat Her2/neu have shown protective and therapeutics potentials against Her2/neu-expressing mammary tumors. However, the efficacy of active vaccination is limited since Her2 is a self-tolerated antigen. Hence, new strategies are required to enhance both the quality and quantity of the immune response against Her2-expressing tumors. Many studies have used Her2/neu gene with cytokine or other molecules involved in regulation of immune response to enhance the potency of Her2/neu DNA vaccines. Some studies fused adjuvant gene to C-terminal domain of Her2/neu gene, while others fused the adjuvant gene N-terminally to Her2/neu gene, but no comparison on how direction of fusion could affect efficiency of DNA vaccine has ever been made. Based on previous reports demonstrating potent adjuvant activity of gp96 C-terminal domain, we chose it as adjuvant. The aim of this study was to investigate if direction of fusion could affect adjuvant activity of gp96 C-terminal domain or potency of Her2/neu DNA vaccination. To do so, we fused C-terminal domain of gp96 to downstream or C-terminal end of transmembrane and extracellular domain (TM+ECD) of rat Her2/neu and resultant immune response to DNA vaccination was evaluated. The results were compared with that of N-terminally fusion of gp96 C-terminal domain to TM+ECD of rat Her2/neu. Our results revealed that adjuvant activity of gp96 C-terminal domain is enhanced when fused N-terminally to TM+ECD of rat Her2/neu. It suggests that adjuvant activity of gp96 C-terminal domain towards Her2/neu is fusion direction-dependent.  相似文献   
93.
It is becoming common for plant scientists to develop projects that require the genotyping of large numbers of plants. The first step in any genotyping project is to collect a tissue sample from each individual plant. The traditional approach to this task is to sample plants one-at-a-time. If one wishes to genotype hundreds or thousands of individuals, however, using this strategy results in a significant bottleneck in the genotyping pipeline. The Ice-Cap method that we describe here provides a high-throughput solution to this challenge by allowing one scientist to collect tissue from several thousand seedlings in a single day 1,2. This level of throughput is made possible by the fact that tissue is harvested from plants 96-at-a-time, rather than one-at-a-time.The Ice-Cap method provides an integrated platform for performing seedling growth, tissue harvest, and DNA extraction. The basis for Ice-Cap is the growth of seedlings in a stacked pair of 96-well plates. The wells of the upper plate contain plugs of agar growth media on which individual seedlings germinate. The roots grow down through the agar media, exit the upper plate through a hole, and pass into a lower plate containing water. To harvest tissue for DNA extraction, the water in the lower plate containing root tissue is rapidly frozen while the seedlings in the upper plate remain at room temperature. The upper plate is then peeled away from the lower plate, yielding one plate with 96 root tissue samples frozen in ice and one plate with 96 viable seedlings. The technique is named "Ice-Cap" because it uses ice to capture the root tissue. The 96-well plate containing the seedlings can then wrapped in foil and transferred to low temperature. This process suspends further growth of the seedlings, but does not affect their viability. Once genotype analysis has been completed, seedlings with the desired genotype can be transferred from the 96-well plate to soil for further propagation. We have demonstrated the utility of the Ice-Cap method using Arabidopsis thaliana, tomato, and rice seedlings. We expect that the method should also be applicable to other species of plants with seeds small enough to fit into the wells of 96-well plates.  相似文献   
94.
Bacteria and archaea in the dark ocean (>200 m) comprise 0.3–1.3 billion tons of actively cycled marine carbon. Many of these microorganisms have the genetic potential to fix inorganic carbon (autotrophs) or assimilate single-carbon compounds (methylotrophs). We identified the functions of autotrophic and methylotrophic microorganisms in a vent plume at Axial Seamount, where hydrothermal activity provides a biogeochemical hot spot for carbon fixation in the dark ocean. Free-living members of the SUP05/Arctic96BD-19 clade of marine gamma-proteobacterial sulfur oxidizers (GSOs) are distributed throughout the northeastern Pacific Ocean and dominated hydrothermal plume waters at Axial Seamount. Marine GSOs expressed proteins for sulfur oxidation (adenosine phosphosulfate reductase, sox (sulfur oxidizing system), dissimilatory sulfite reductase and ATP sulfurylase), carbon fixation (ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO)), aerobic respiration (cytochrome c oxidase) and nitrogen regulation (PII). Methylotrophs and iron oxidizers were also active in plume waters and expressed key proteins for methane oxidation and inorganic carbon fixation (particulate methane monooxygenase/methanol dehydrogenase and RuBisCO, respectively). Proteomic data suggest that free-living sulfur oxidizers and methylotrophs are among the dominant primary producers in vent plume waters in the northeastern Pacific Ocean.  相似文献   
95.
Herein we report the SAR study which involved structural modifications to the linker length, aryl substitution and alkylamine ring size of the benzo[d]thiazol-2(3H)one based sigma receptor (σ) ligands. Many compounds in this series displayed low nanomolar affinity for the σ receptor subtypes. In particular, 8a showed high affinity (σ-1 Ki = 4.5 nM) for σ-1 receptors and moderately high selectivity (483-fold) over σ-2 receptors.  相似文献   
96.
97.
热休克蛋白Gp96属于HSP90家族,是内质网中最丰富的蛋白质之一,在细胞内发挥着分子伴侣的作用。在天然免疫中,Gp96则通过与Toll样受体等相互作用刺激抗原呈递细胞 (如DC等) 产生各种细胞因子激活免疫系统;而在获得性免疫中,Gp96抗原胶通过抗原交叉呈递给MHC-I类分子,诱发机体抗原特异性细胞毒T细胞免疫应答,清除病原物感染和肿瘤;近年来的研究还发现Gp96具有免疫佐剂的功能。以下从Gp96的生物学特性、免疫学机制以及其在抗病原感染和抗肿瘤免疫中的应用等方面做一小结,为设计以Gp96-抗原肽为新一代疫苗的临床研究提供理论基础。  相似文献   
98.
We describe importance of the characteristic segment in ATPase domain of DnaK chaperone which is present in all gram-negative bacteria but is absent in all gram-positive bacteria. In vitro studies, ATPase activity, luciferase-refolding activity, and surface plasmon resonance analyses, demonstrated that a segment-deletion mutant DnaKDelta74-96 became defective in the cooperation with the co-chaperones DnaJ and GrpE. In addition, in vivo complementation assay showed that expression of DnaKDelta74-96 could not rescue the viability of Escherichia coli DeltadnaK mutant at 43 degrees C. Consequently, we suggest evolutionary significance for this DnaK ATPase domain segment in gram-negative bacteria towards the DnaK chaperone system.  相似文献   
99.
A rapid assay for drug sensitivity of glioblastoma stem cells   总被引:2,自引:0,他引:2  
Glioblastoma (GBM) is a highly infiltrating, aggressive brain cancer with no available curative treatment. We developed a rapid assay for assessing the effect of various drugs on GBM stem cells. The assay uses a small number of separated CD133+ cells (20,000 in 0.2 ml) in 96-well plate that form neurospheres within 1-2 days. Various drugs disperse the neurospheres within 24-36 h, which can be quantified microscopically. We used the GBM cell line A-172 to develop the conditions for the assay, utilizing Gleevec, the gamma-secretase inhibitor DAPT, and the anti-bacterial peptide amph1D. The results show dispersion of the neurospheres leading to cell death, at relatively low drugs concentrations (<25 microM). Drug combination showed a synergistic effect and disruption of neurospheres under lower concentrations. We applied this assay to the CD133+ cells of surgical specimens from three patients that showed similar results. This assay facilitates a rapid test of drugs on small amounts of fractionated patient's GBM stem cells.  相似文献   
100.
Microglia rapidly mount an inflammatory response to pathogens in the central nervous system (CNS). Heparan sulfate proteoglycans (HSPGs) have been attributed various roles in inflammation. To elucidate the relevance of microglial HSPGs in a pro-inflammatory response we isolated microglia from mice overexpressing heparanase (Hpa-tg), the HS-degrading endoglucuronidase, and challenged them with lipopolysaccharide (LPS), a bacterial endotoxin. Prior to LPS-stimulation, the LPS-receptor cluster-of-differentiation 14 (CD14) and Toll-like receptor 4 (TLR4; essential for the LPS response) were similarly expressed in Ctrl and Hpa-tg microglia. However, compared with Ctrl microglia, Hpa-tg cells released significantly less tumor necrosis factor-α (TNFα), essentially failed to up-regulate interleukin-1β (IL1β) and did not initiate synthesis of proCD14. Isolated primary astroyctes expressed TLR4, but notably lacked CD14 and in contrast to microglia, LPS challenge induced a similar TNFα response in Ctrl and Hpa-tg astrocytes, while neither released IL1β. The astrocyte TNFα-induction was thus attributed to CD14-independent TLR4 activation and was unaffected by the cells HS status. Equally, the suppressed LPS-response in Hpa-tg microglia indicated a loss of CD14-dependent TLR4 activation, suggesting that microglial HSPGs facilitate this process. Indeed, confocal microscopy confirmed interactions between microglial HS and CD14 in LPS-stimulated microglia and a potential HS-binding motif in CD14 was identified. We conclude that microglial HSPGs facilitate CD14-dependent TLR4 activation and that heparanase can modulate this mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号