首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   517篇
  免费   0篇
  517篇
  2022年   1篇
  2010年   1篇
  2009年   31篇
  2008年   26篇
  2007年   42篇
  2006年   35篇
  2005年   23篇
  2004年   26篇
  2003年   33篇
  2002年   19篇
  2001年   19篇
  2000年   21篇
  1999年   21篇
  1998年   24篇
  1997年   25篇
  1996年   21篇
  1995年   21篇
  1994年   16篇
  1993年   16篇
  1992年   18篇
  1991年   13篇
  1990年   12篇
  1989年   9篇
  1988年   10篇
  1987年   6篇
  1986年   7篇
  1985年   4篇
  1984年   7篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有517条查询结果,搜索用时 15 毫秒
101.
We present carbon stable isotope, δ13C, results from air and organic matter samples collected during 98 individual field campaigns across a network of Carboeuroflux forest sites in 2001 (14 sites) and 2002 (16 sites). Using these data, we tested the hypothesis that δ13C values derived from large‐scale atmospheric measurements and models, which are routinely used to partition carbon fluxes between land and ocean, and potentially between respiration and photosynthesis on land, are consistent with directly measured ecosystem‐scale δ13C values. In this framework, we also tested the potential of δ13C in canopy air and plant organic matter to record regional‐scale ecophysiological patterns. Our network estimates for the mean δ13C of ecosystem respired CO2 and the related ‘discrimination’ of ecosystem respiration, δer and Δer, respectively, were ?25.6±1.9‰ and 17.8 ±2.0‰ in 2001 and ?26.6±1.5‰ and 19.0±1.6‰ in 2002. The results were in close agreement with δ13C values derived from regional‐scale atmospheric measurement programs for 2001, but less so in 2002, which had an unusual precipitation pattern. This suggests that regional‐scale atmospheric sampling programs generally capture ecosystem δ13C signals over Europe, but may be limited in capturing some of the interannual variations. In 2001, but less so in 2002, there were discernable longitudinal and seasonal trends in δer. From west to east, across the network, there was a general enrichment in 13C (~3‰ and ~1‰ for the 2 years, respectively) consistent with increasing Gorczynski continentality index for warmer and drier conditions. In 2001 only, seasonal 13C enrichment between July and September, followed by depletion in November (from about ?26.0‰ to ?24.5‰ to ?30.0‰), was also observed. In 2001, July and August δer values across the network were significantly related to average daytime vapor pressure deficit (VPD), relative humidity (RH), and, to a lesser degree, air temperature (Ta), but not significantly with monthly average precipitation (Pm). In contrast, in 2002 (a much wetter peak season), δer was significantly related with Ta, but not significantly with VPD and RH. The important role of plant physiological processes on δer in 2001 was emphasized by a relatively rapid turnover (between 1 and 6 days) of assimilated carbon inferred from time‐lag analyses of δer vs. meteorological parameters. However, this was not evident in 2002. These analyses also noted corresponding diurnal cycles of δer and meteorological parameters in 2001, indicating a rapid transmission of daytime meteorology, via physiological responses, to the δer signal during this season. Organic matter δ13C results showed progressive 13C enrichment from leaves, through stems and roots to soil organic matter, which may be explained by 13C fractionation during respiration. This enrichment was species dependent and was prominent in angiosperms but not in gymnosperms. δ13C values of organic matter of any of the plant components did not well represent short‐term δer values during the seasonal cycle, and could not be used to partition ecosystem respiration into autotrophic and heterotrophic components.  相似文献   
102.
The regulation of proline accumulation in detached rice leaves exposed to excess NiSO4 was investigated. NiSO4 treatment increased proline and Ni contents but had no effect on relative water content, indicating that proline accumulation in Ni-exposed detached rice leaves was due to Ni uptake per se, rather than to water stress. Proline accumulation caused by NiSO4 was related to protein hydrolysis, a decrease in proline dehydrogenase activity, and a decrease in proline utilization. It seems that an increase in the content of ammonia and an increase in the activities of Δ1-pyrroline-5-carboxylate reductase and ornithine-δ-aminotransferase play minor if any role in Ni-induced proline accumulation in detached rice leaves.  相似文献   
103.
Isopentenyl diphosphate (IPP), an important precursor of isoprenoid biosynthesis in prokaryotic and eukaryotic organisms, has been shown to activate Vgamma9/Vdelta2 T cells, the major subset of human gammadelta T cells. The biosynthesis of IPP has been first described as the acetate/mevalonate pathway. Recently, 1-deoxy-D-xylulose 5-phosphate (DOXP) and 2-C-methyl-D-erythritol 4-phosphate have been shown to be key metabolites in the DOXP pathway also leading to the formation of IPP in some eubacteria such as Escherichia coli. Here we report that the low molecular mass fraction of extracts from bacteria using the DOXP pathway induces Vgamma9/Vdelta2 T cell activation, while analogous preparations from bacteria using the classical mevalonate pathway fail to do so. Addition of 1-deoxy-D-xylulose potentiates the ability of E. coli extracts to activate Vgamma9/Vdelta2 T cells. As the amounts of IPP present in the bacterial preparations are not sufficient to induce significant Vgamma9/Vdelta2 T cell activation, our data suggest that compounds other than IPP associated with the DOXP pathway are responsible for Vgamma9/Vdelta2 T cell activation.  相似文献   
104.
 Skeletal δ13C levels in symbiotic reef corals are believed to be predominantly influenced by metabolic fractionation. Therefore, environmental variables influencing coral metabolism should also affect skeletal δ13C levels. To test this hypothesis, we measured the effects of light (which drives photosynthesis) and relative zooplankton levels (heterotrophy) on skeletal δ13C values in the corals Pavona clavus and P. gigantea at two depths (1 m and 7 m). For both species, decreases in light or increases in zooplankton resulted in significant decreases in skeletal δ13C levels. A significant decrease in δ13C values with depth was observed in Pavona gigantea only. Thus, light and zooplankton directly affect coral skeletal δ13C values, supporting the hypothesis that metabolic fractionation significantly contributes to skeletal δ13C levels. Simultaneous decreases in both light and zooplankton resulted in decreases in skeletal δ13C values, reflecting decreases in light. In Pavona clavus, intra-annual variation in skeletal δ13C values over one year correlated with seasonal changes in irradiance. Further study is needed to resolve how skeletal δ13C values vary at intermediate levels of irradiance and zooplankton, and in other coral species. Accepted: 14 July 1998  相似文献   
105.
The six most toxic Pakistani isolates of Bacillus thuringiensis (SBS Bt-23, 29, 34, 37, 45 and 47), which were previously characterized for their toxicity against larvae of mosquito, Anopheles stephensi, and the presence of cry4 gene, were used for cry11 (cry4D) gene amplification. A 1.9-kb DNA fragment of cry11 gene was PCR-amplified, cloned in expression vector pT7-7, and then used for transformation of E. coli BL21C. The optimum expression was obtained with 1 mM IPTG at 37°C for 3 h. This gene showed different percentage homologies at protein level with scattered mutations in the toxic region. Biotoxicity assay of recombinant protein showed that Cry11 of SBS Bt 45 (DAB Bt 5) was the most toxic protein against third instar larvae of mosquito, A. stephensi, and has potentiality of a bioinsecticide against mosquitoes.  相似文献   
106.
Current models of leaf water enrichment predict that the differences between isotopic enrichment of water at the site of evaporation (Δe) and mean lamina leaf water enrichment (ΔL) depend on transpiration rates ( E ), modulated by the scaled effective length ( L ) of water isotope movement in the leaf. However, variations in leaf parameters in response to changing environmental conditions might cause changes in the water path and thus L . We measured the diel course of ΔL for 18O and 2H in beech seedlings under well-watered and water-limited conditions. We applied evaporative enrichment models of increasing complexity to predict Δe and ΔL, and estimated L from model fits. Water-limited plants showed moderate drought stress, with lower stomatal conductance, E and stem water potential than the control. Despite having double E , the divergence between Δe and ΔL was lower in well-watered than in water-limited plants, and thus, L should have changed to counteract differences in E . Indeed, L was about threefold higher in water-limited plants, regardless of the models used. We conclude that L changes with plant water status far beyond the variations explained by water content and other measured variables, thus limiting the use of current evaporative models under changing environmental conditions.  相似文献   
107.
108.
The opioid receptors are a member of G protein-coupled receptors that mediate physiological effects of endogenous opioid peptides and structurally distinct opioid alkaloids. Although it is well characterized that there is differential receptor desensitization and internalization properties following activation by distinct agonists, the underlying mechanisms remain elusive. We investigated the signaling events of δ-opioid receptor (δOR) initiated by two ligands, DPDPE and TIPP. We found that although both ligands inhibited adenylyl cyclase (AC) and activated ERK1/2, only DPDPE induced desensitization and internalization of the δOR. We further found that DPDPE, instead of TIPP, could activate GRK2 by phosphorylating the non-receptor tyrosine kinase Src and translocating it to membrane receptors. Activation of GRK2 led to the phosphorylation of serine residues in the C-terminal tail, which facilitates β-arrestin1/2 membrane translocation. Meanwhile, we also found that DPDPE promoted β-arrestin1 dephosphorylation in a Src-dependent manner. Thus, DPDPE appears to strengthen β-arrestin function by dual regulations: promoting β-arrestin recruitment and increasing β-arrestin dephosphorylation at the plasma membrane in a Src-dependent manner. All effects initiated by DPDPE could be abolished or suppressed by PP2, an inhibitor of Src. Morphine, which has been previously shown to be unable to desensitize or internalize δOR, also behaved as TIPP in failure to utilize Src to regulate δOR signaling. These findings point to the existence of agonist-specific utilization of Src to regulate δOR signaling and reveal the molecular events by which Src modulates δOR responsiveness.  相似文献   
109.
Delta (δ) subunit containing GABAA receptors are expressed extra‐synaptically and mediate tonic inhibition. In cerebellar granule cells, they often form a receptor together with α6 subunits. We were interested to determine the architecture of these receptors. We predefined the subunit arrangement of 24 different GABAA receptor pentamers by subunit concatenation. These receptors (composed of α6, β3 and δ subunits) were expressed in Xenopus oocytes and their electrophysiological properties analyzed. Currents elicited in response to GABA were determined in presence and absence of 3α, 21‐dihydroxy‐5α‐pregnan‐20‐one and to 4,5,6,7‐tetrahydroisoxazolo[5,4‐c]‐pyridin‐3‐ol. α6‐β3‐α6/δ receptors showed a substantial response to GABA alone. Three receptors, β3‐α6‐δ/α6‐β3, α6‐β3‐α63‐δ and β3‐δ‐β36‐β3, were only uncovered in the combined presence of the neurosteroid 3α, 21‐dihydroxy‐5α‐pregnan‐20‐one with GABA. All four receptors were activated by 4,5,6,7‐tetrahydroisoxazolo[5,4‐c]‐pyridin‐3‐ol. None of the functional receptors was modulated by physiological concentrations (up to 30 mM) of ethanol. GABA concentration response curves indicated that the δ subunit can contribute to the formation of an agonist site. We conclude from the investigated receptors that the δ subunit can assume multiple positions in a receptor pentamer composed of α6, β3 and δ subunits.  相似文献   
110.
We explored the net effects of grazing on soil C and N pools in a Patagonian shrub–grass steppe (temperate South America). Net effects result from the combination of direct impacts of grazing on biogeochemical characteristics of microsites with indirect effects on relative cover of vegetated and unvegetated microsites. Within five independent areas, we sampled surface soils in sites subjected to three grazing intensities: (1) ungrazed sites inside grazing exclosures, (2) moderately grazed sites adjacent to them, and (3) intensely grazed sites within the same paddock. Grazing significantly reduced soil C and N pools, although this pattern was clearest in intensely grazed sites. This net effect was due to the combination of a direct reduction of soil N content in bare soil patches, and indirect effects mediated by the increase of the cover of bare soil microsites, with lower C and N content than either grass or shrub microsites. This increase in bare soil cover was accompanied by a reduction in cover of preferred grass species and standing dead material. Finally, stable isotope signatures varied significantly among grazed and ungrazed sites, with δ15N and δ13C significantly depleted in intensely grazed sites, suggesting reduced mineralization with increased grazing intensity. In the Patagonian steppe, grazing appears to exert a negative effect on soil C and N cycles; sound management practices must incorporate the importance of species shifts within life form, and the critical role of standing dead material in maintaining soil C and N stocks and biogeochemical processes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Author Contributions  RAG designed study, performed research, analyzed data, wrote the paper; ATA designed study, wrote the paper; CGGM designed study, performed research, analyzed data; MGP performed research; OES designed study; RBJ designed study, contributed new methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号