首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1059篇
  免费   32篇
  国内免费   70篇
  2023年   1篇
  2022年   13篇
  2021年   18篇
  2020年   11篇
  2019年   31篇
  2018年   24篇
  2017年   22篇
  2016年   19篇
  2015年   18篇
  2014年   43篇
  2013年   101篇
  2012年   94篇
  2011年   50篇
  2010年   33篇
  2009年   52篇
  2008年   53篇
  2007年   47篇
  2006年   43篇
  2005年   39篇
  2004年   48篇
  2003年   32篇
  2002年   43篇
  2001年   22篇
  2000年   22篇
  1999年   21篇
  1998年   24篇
  1997年   34篇
  1996年   16篇
  1995年   19篇
  1994年   18篇
  1993年   19篇
  1992年   12篇
  1991年   13篇
  1990年   3篇
  1989年   12篇
  1988年   5篇
  1987年   9篇
  1986年   6篇
  1985年   11篇
  1984年   17篇
  1983年   7篇
  1982年   4篇
  1981年   13篇
  1980年   6篇
  1979年   5篇
  1978年   1篇
  1977年   2篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
排序方式: 共有1161条查询结果,搜索用时 849 毫秒
891.
Short-rib polydactyly syndromes (SRPS) arise from mutations in genes involved in retrograde intraflagellar transport (IFT) and basal body homeostasis, which are critical for cilia assembly and function. Recently, mutations in WDR34 or WDR60 (candidate dynein intermediate chains) were identified in SRPS. We have identified and characterized Tctex1d2, which associates with Wdr34, Wdr60 and other dynein complex 1 and 2 subunits. Tctex1d2 and Wdr60 localize to the base of the cilium and their depletion causes defects in ciliogenesis. We propose that Tctex1d2 is a novel dynein light chain important for trafficking to the cilium and potentially retrograde IFT and is a new molecular link to understanding SRPS pathology.  相似文献   
892.
Cellular supply of deoxynucleoside triphosphates (dNTPs) is crucial for DNA replication and repair. In this study, we investigated the role of CMP/UMP kinase (CMPK), an enzyme catalyzes CDP formation, in DNA repair. Knockdown of CMPK delays DNA repair during recovery from UV damage in serum-deprived cells but not in the cells without serum deprivation. Exogenous supply of cytidine or deoxycytidine facilitates DNA repair dependent on CMPK in serum-deprived cells, suggesting that the synthesis of dCDP or CDP determines the rate of repair. However, CMPK knockdown does not affect the steady state level of dCTP in serum-deprived cells. We then found the localization of CMPK at DNA damage sites and its complex formation with Tip60 and ribonucleotide reductase. Our analysis demonstrated that the N-terminal 32-amino-acid of CMPK is required for its recruitment to DNA damage sites in a Tip60-dependent manner. Re-expression of wild-type but not N-terminus deleted CMPK restores the efficiency of DNA repair in CMPK knockdown cells. We proposed that site-specific dCDP formation via CMPK provides a means to facilitate DNA repair in serum-deprived cells.  相似文献   
893.
The nuclear export of large ribonucleoparticles is complex and requires specific transport factors. Messenger RNAs are exported through the RNA-binding protein Npl3 and the interacting export receptor Mex67. Export of large ribosomal subunits also requires Mex67; however, in this case, Mex67 binds directly to the 5S ribosomal RNA (rRNA) and does not require the Npl3 adaptor. Here, we have discovered a new function of Npl3 in mediating the export of pre-60S ribosomal subunit independently of Mex67. Npl3 interacts with the 25S rRNA, ribosomal and ribosome-associated proteins, as well as with the nuclear pore complex. Mutations in NPL3 lead to export defects of the large subunit and genetic interactions with other pre-60S export factors.  相似文献   
894.
895.
Numerous studies indicate the importance of acetylation in p53-mediated stress responses upon DNA damage. We and others previously showed that TIP60 (Tat-interacting protein of 60 kDa)-mediated acetylation of p53 at K120 is crucial for p53-dependent apoptotic responses. Nevertheless, it remains unclear how TIP60-mediated effects on p53 are dynamically regulated in vivo. Here, we report that UHRF1 (ubiquitin-like with PHD and RING finger domains 1) interacts with TIP60 both in vitro and in vivo and induces degradation-independent ubiquitination of TIP60. Moreover, UHRF1 expression markedly suppresses the ability of TIP60 to acetylate p53. In contrast, RNAi-mediated knockdown of UHRF1 increases the endogenous levels of p53 acetylation at K120 and p53-mediated apoptosis is significantly enhanced in UHRF1-depleted cells. To elucidate the mechanisms of this regulation, we found that the interaction between TIP60 and p53 is severely inhibited in the presence of UHRF1, suggesting that UHRF1 modulates TIP60-mediated functions in both K120 acetylation-dependent and -independent manners. Consistent with this notion, UHRF1 knockdown promotes activation of p21 and PUMA but not MDM2. These findings demonstrate that UHRF1 is a critical negative regulator of TIP60 and suggest that UHRF1-mediated effects on p53 may contribute, at least in part, to its role in tumorigenesis.  相似文献   
896.
Apoptosis induced by fucoxanthin in HL-60 cells was associated with a loss of mitochondrial membrane potential at an early stage, but not with an increase in reactive oxygen species. Fucoxanthin treatment caused cleavages of procaspase-3 and poly (ADP-ribose) polymerase without any effect on the protein level of Bcl-2, Bcl-XL, or Bax. Apoptosis induction by fucoxanthin may be mediated via mitochondrial membrane permeabilization and caspase-3 activation.  相似文献   
897.
We isolated from soybean miso 8-hydroxyglycitein and 6-hydroxydaidzein as DPPH-radical scavengers, and elucidated their chemical structures by mass spectrometric, and 1H- and 13C-NMR spectrosopic analyses. These compounds showed DPPH-radical scavenging activity as high as that of α-tocopherol, 8-hydroxygenistein and 8-hydroxydaidzein. This is the first report of the isolation of 8-hydroxyglycitein from a natural source.  相似文献   
898.
It was found that a new compound of phenylalanine metabolites (2-hydroxy-3-phenylpropenoic acid) and phenylacetic acid were formed in the cultured Czapek medium containing phenylalanine by Aspergillus sojae. 2-Hydroxy-3-phenylpropenoic acid (HPPA) was formed from phenylalanine (d- and l-form) via phenyllactic acid (d- and l-form), and degraded to benzoic acid, p-hydroxybenzoic acid, protocatechuic acid, and catechol in this order.

On the other hand, phenylacetic acid was formed from phenylpyruvic acid, and converted to homogentisic acid via o-hydroxyphenylacetic acid. From these results, a metabolic pathway of phenylalanine in Asp. sojae was proposed.  相似文献   
899.
Amylose-borate interaction has been analyzed by frontal gel chromatography, using the constituent velocity data alone. The constituent Velocity equation was reformulated in terms of elution volume for a type of interacting system described byA+iB=ABi(i=1,2,3n)

Detailed examination of the binding data indicates that, in the complex formation between amylose and borate, this type of equilibria operates predominantly, if not solely. Use of the constituent elution volume equation enabled us, for the first time, to evaluate the association constant (K) and number of binding site pertaining to this system, i.e., K = 4.9 102 and n = 1. There was no evidence indicating the occurrence of the formation of inclusion complex.  相似文献   
900.
By the quantum-molecular dynamics (QMD) technique based on the Roothaan–Hall equation and the Newton motion law, geometrical deformation and failure behavior of C60 fullerene dimer (2C60) as well as single C60 fullerene under applied external electric field are simulated. Further, the effects of the electric field direction on the electric field-induced deformation, polarization-charge distribution and dipole moment of the fullerene molecules are discussed systemically. It is found that the geometrical configuration and failure behavior of the 2C60 molecule are sensitive to the electric field direction, that when the electric field direction is parallel to the bridging C–C bonds of the 2C60 molecule the 2C60 fails easily, and that when the electric field direction is perpendicular to the 2C60 fails difficultly and has the same polarization and failure mechanism as the single C60.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号