首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   5篇
  国内免费   12篇
  2023年   6篇
  2022年   8篇
  2021年   1篇
  2020年   2篇
  2019年   5篇
  2018年   4篇
  2017年   2篇
  2016年   7篇
  2015年   7篇
  2014年   8篇
  2013年   11篇
  2012年   10篇
  2011年   59篇
  2010年   9篇
  2009年   11篇
  2008年   8篇
  2007年   8篇
  2006年   11篇
  2005年   15篇
  2004年   6篇
  2003年   9篇
  2002年   6篇
  2001年   5篇
  2000年   5篇
  1999年   6篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   7篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1988年   5篇
  1987年   4篇
  1986年   1篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1979年   3篇
  1978年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有277条查询结果,搜索用时 31 毫秒
91.
The development of microfluidic platforms for performing chemistry and biology has in large part been driven by a range of potential benefits that accompany system miniaturisation. Advantages include the ability to efficiently process nano- to femoto- liter volumes of sample, facile integration of functional components, an intrinsic predisposition towards large-scale multiplexing, enhanced analytical throughput, improved control and reduced instrumental footprints.1In recent years much interest has focussed on the development of droplet-based (or segmented flow) microfluidic systems and their potential as platforms in high-throughput experimentation.2-4 Here water-in-oil emulsions are made to spontaneously form in microfluidic channels as a result of capillary instabilities between the two immiscible phases. Importantly, microdroplets of precisely defined volumes and compositions can be generated at frequencies of several kHz. Furthermore, by encapsulating reagents of interest within isolated compartments separated by a continuous immiscible phase, both sample cross-talk and dispersion (diffusion- and Taylor-based) can be eliminated, which leads to minimal cross-contamination and the ability to time analytical processes with great accuracy. Additionally, since there is no contact between the contents of the droplets and the channel walls (which are wetted by the continuous phase) absorption and loss of reagents on the channel walls is prevented.Once droplets of this kind have been generated and processed, it is necessary to extract the required analytical information. In this respect the detection method of choice should be rapid, provide high-sensitivity and low limits of detection, be applicable to a range of molecular species, be non-destructive and be able to be integrated with microfluidic devices in a facile manner. To address this need we have developed a suite of experimental tools and protocols that enable the extraction of large amounts of photophysical information from small-volume environments, and are applicable to the analysis of a wide range of physical, chemical and biological parameters. Herein two examples of these methods are presented and applied to the detection of single cells and the mapping of mixing processes inside picoliter-volume droplets. We report the entire experimental process including microfluidic chip fabrication, the optical setup and the process of droplet generation and detection.  相似文献   
92.
In the last 40 years, the United States invested over 200 billion dollars on cancer research, resulting in only a 5% decrease in death rate. A major obstacle for improving patient outcomes is the poor understanding of mechanisms underlying cellular migration associated with aggressive cancer cell invasion, metastasis and therapeutic resistance. Glioblastoma Multiforme (GBM), the most prevalent primary malignant adult brain tumor, exemplifies this difficulty. Despite standard surgery, radiation and chemotherapies, patient median survival is only fifteen months, due to aggressive GBM infiltration into adjacent brain and rapid cancer recurrence. The interactions of aberrant cell migratory mechanisms and the tumor microenvironment likely differentiate cancer from normal cells. Therefore, improving therapeutic approaches for GBM require a better understanding of cancer cell migration mechanisms. Recent work suggests that a small subpopulation of cells within GBM, the brain tumor stem cell (BTSC), may be responsible for therapeutic resistance and recurrence. Mechanisms underlying BTSC migratory capacity are only starting to be characterized. Due to a limitation in visual inspection and geometrical manipulation, conventional migration assays are restricted to quantifying overall cell populations. In contrast, microfluidic devices permit single cell analysis because of compatibility with modern microscopy and control over micro-environment. We present a method for detailed characterization of BTSC migration using compartmentalizing microfluidic devices. These PDMS-made devices cast the tissue culture environment into three connected compartments: seeding chamber, receiving chamber and bridging microchannels. We tailored the device such that both chambers hold sufficient media to support viable BTSC for 4-5 days without media exchange. Highly mobile BTSCs initially introduced into the seeding chamber are isolated after migration though bridging microchannels to the parallel receiving chamber. This migration simulates cancer cellular spread through the interstitial spaces of the brain. The phase live images of cell morphology during migration are recorded over several days. Highly migratory BTSC can therefore be isolated, recultured, and analyzed further. Compartmentalizing microfluidics can be a versatile platform to study the migratory behavior of BTSCs and other cancer stem cells. By combining gradient generators, fluid handling, micro-electrodes and other microfluidic modules, these devices can also be used for drug screening and disease diagnosis. Isolation of an aggressive subpopulation of migratory cells will enable studies of underlying molecular mechanisms.  相似文献   
93.
Adipose triglyceride lipase (ATGL) was recently identified as a rate-limiting triglyceride (TG) lipase and its activity is stimulated by comparative gene identification-58 (CGI-58). Mutations in the ATGL or CGI-58 genes are associated with neutral lipid storage diseases characterized by the accumulation of TG in multiple tissues. The cardiac phenotype, known as triglyceride deposit cardiomyovasculopathy, is characterized by TG accumulation in coronary atherosclerotic lesions and in the myocardium. Recent reports showed that myocardial TG accumulation is significantly higher in patients with diabetes and is associated with impaired left ventricular diastolic function. Therefore, we investigated the roles of ATGL and CGI-58 in the development of myocardial steatosis in the diabetic state. Histological examination with oil red O staining showed marked lipid deposition in the hearts of diabetic fatty db/db mice. Cardiac triglyceride and diglyceride contents were greater in db/db mice than in db/+ control mice. Next, we determined the expression of genes and proteins that affect lipid metabolism, and found that ATGL and CGI-58 expression levels were decreased in the hearts of db/db mice. We also found increased expression of genes regulating triglyceride synthesis (sterol regulatory element-binding protein 1c, monoacylglycerol acyltransferases, and diacylglycerol acyltransferases) in db/db mice. Regarding key modulators of apoptosis, PKC activity, and oxidative stress, we found that Bcl-2 levels were lower and that phosphorylated PKC and 8-hydroxy-2′-deoxyguanosine levels were higher in db/db hearts. These results suggest that reduced ATGL and CGI-58 expression and increased TG synthesis may exacerbate myocardial steatosis and oxidative stress, thereby promoting cardiac apoptosis in diabetic mice.  相似文献   
94.
Triglyceride (TG) accumulation in hepatocytes (hepatic steatosis) preludes the development of advanced nonalcoholic fatty liver diseases (NAFLDs) such as steatohepatitis, fibrosis, and cirrhosis. Mutations in human Comparative Gene Identification-58 (CGI-58) cause cytosolic TG-rich lipid droplets to accumulate in almost all cell types including hepatocytes. However, it is unclear if CGI-58 mutation causes hepatic steatosis locally or via altering lipid metabolism in other tissues. To directly address this question, we created liver-specific CGI-58 knockout (LivKO) mice. LivKO mice on standard chow diet displayed microvesicular and macrovesicular panlobular steatosis, and progressed to advanced NAFLD stages over time, including lobular inflammation and centrilobular fibrosis. Compared with CGI-58 floxed control littermates, LivKO mice showed 8-fold and 52-fold increases in hepatic TG content, which was associated with 40% and 58% decreases in hepatic TG hydrolase activity at 16 and 42 weeks, respectively. Hepatic cholesterol also increased significantly in LivKO mice. At 42 weeks, LivKO mice showed increased hepatic oxidative stress, plasma aminotransferases, and hepatic mRNAs for genes involved in fibrosis and inflammation, such as α-smooth muscle actin, collagen type 1 α1, tumor necrosis factor α, and interleukin-1β. In conclusion, CGI-58 deficiency in the liver directly causes not only hepatic steatosis but also steatohepatitis and fibrosis.  相似文献   
95.
Lateef DM  Washington MC  Sayegh AI 《Peptides》2011,32(6):1289-1295
Camostat mesilate (or mesylate) releases endogenous cholecystokinin (CCK) or CCK-58, the only detectable endocrine form of CCK in the rat, and reduces cumulative food intake by activating CCK1 receptor. However, the literature lacks meal pattern analysis and an appropriate dose-response curve for this peptide. Therefore, the current study determines meal size (MS), intermeal interval (IMI) and satiety ratio (SR) by orogastric gavage of camostat (0, 12.5, 25, 50, 100, 200, 300, 400, 800 mg/kg) and compares them to those previously reported by a single dose of CCK-8 (1 nmol/kg, i.p), the most utilized form of CCK. We found that camostat (200, 300, 400 and 800 mg/kg) and CCK-8 reduced cumulative food intake and the size of the first meal, but only camostat prolonged IMI and increased SR. There was no change in the duration of the first two meals or in rated behaviors such as feeding, grooming, standing and resting in response to camostat and CCK-8, but there was more resting during the IMI in response to camostat. This study provides meal pattern analysis and an appropriate dose-response curve for camostat and CCK-8. Camostat reduces food intake by decreasing MS and prolonging IMI, whereas CCK-8 reduces food intake by reducing only meal size.  相似文献   
96.
Our recently presented PS II model (Belyaeva et al., 2008) was improved in order to permit a consistent simulation of Single Flash Induced Transient Fluorescence Yield (SFITFY) traces that were earlier measured by Steffen et al. (2005) on whole leaves of Arabidopsis (A.) thaliana at four different energies of the actinic flash. As the essential modification, the shape of the actinic flash was explicitly taken into account assuming that an exponentially decaying rate simulates the time dependent excitation of PS II by the 10 ns actinic flash. The maximum amplitude of this excitation exceeds that of the measuring light by 9 orders of magnitude. A very good fit of the SFITFY data was achieved in the time domain from 100 ns to 10 s for all actinic flash energies (the maximum energy of 7.5 × 1016 photons/(cm2 flash) is set to 100%, the relative energies of weaker actinic flashes were of ∼8%, 4%, ∼1%). Our model allows the calculation and visualization of the transient PS II redox state populations ranging from the dark adapted state, via excitation energy and electron transfer steps induced by pulse excitation, followed by final relaxation into the stationary state eventually attained under the measuring light. It turned out that the rate constants of electron transfer steps are invariant to intensity of the actinic laser flash. In marked contrast, an increase of the actinic flash energy by more than two orders of magnitude from 5.4 × 1014 photons/(cm2 flash) to 7.5 × 1016 photons/(cm2 flash), leads to an increase of the extent of fluorescence quenching due to carotenoid triplet (3Car) formation by a factor of 14 and of the recombination reaction between reduced primary pheophytin (Phe) and P680+ by a factor of 3 while the heat dissipation in the antenna complex remains virtually constant.The modified PS II model offers new opportunities to compare electron transfer and dissipative parameters for different species (e.g. for the green algae and the higher plant) under varying illumination conditions.  相似文献   
97.
André MJ 《Bio Systems》2011,103(2):239-251
In closed systems, the O2 compensation point (ΓO) was previously defined as the upper limit of O2 level, at a given CO2 level, above which plants cannot have positive carbon balance and survive. Studies with 18O2 measure the actual O2 uptake by photorespiration due to the dual function of Rubisco, the enzyme that fixes CO2 and takes O2 as an alternative substrate. One-step modelling of CO2 and O2 uptakes allows calculating a plant specificity factor (Sp) as the sum of the biochemical specificity of Rubisco and a biophysical specificity, function of the resistance to CO2 transfer from the atmosphere to Rubisco. The crossing points (Cx, Ox) are defined as CO2 and O2 concentrations for which O2 and CO2 uptakes are equal. It is observed that: (1) under the preindustrial atmosphere, photorespiration of C3 plants uses as much photochemical energy as photosynthesis, i.e. the Cx and Ox are equal or near the CO2 and O2 concentrations of that epoch; (2) contrarily to ΓC, a ΓO does not practically limit the plant growth, i.e. the plant net CO2 balance is positive up to very high O2 levels; (3) however, in a closed biosystem, ΓO exists; it is not the limit of plant growth, but the equilibrium point between photosynthesis and the opposite respiratory processes; (4) a reciprocal relationship exists between ΓO and ΓC, as unique functions of the respective CO2 and O2 concentrations and of Sp, this invalidates some results showing two different functions for ΓO and ΓC, and, consequently, the associated analyses related to greenhouse effects in the past; (5) the pre-industrial atmosphere levels of O2 and CO2 are the ΓO and ΓC of the global bio-system. They are equal to or near the values of Cx and Ox of C3 plants, the majority of land plants in preindustrial period. We assume that the crossing points represent favourable feedback conditions for the biosphere-atmosphere equilibrium and could result from co-evolution of plants-atmosphere-climate. We suggest that the evolution of Rubisco and associated pathways is directed by an optimisation between photosynthesis and photorespiration.  相似文献   
98.
Carbapenem-hydrolyzing class D β-lactamases (CHDLs) represent an emerging antibiotic resistance mechanism encountered among the most opportunistic Gram-negative bacterial pathogens. We report here the substrate kinetics and mechanistic characterization of a prominent CHDL, the OXA-58 enzyme, from Acinetobacter baumannii. OXA-58 uses a carbamylated lysine to activate the nucleophilic serine used for β-lactam hydrolysis. The deacylating water molecule approaches the acyl-enzyme species, anchored at this serine (Ser-83), from the α-face. Our data show that OXA-58 retains the catalytic machinery found in class D β-lactamases, of which OXA-10 is representative. Comparison of the homology model of OXA-58 and the recently solved crystal structures of OXA-24 and OXA-48 with the OXA-10 crystal structure suggests that these CHDLs have evolved the ability to hydrolyze imipenem, an important carbapenem in clinical use, by subtle structural changes in the active site. These changes may contribute to tighter binding of imipenem to the active site and removal of steric hindrances from the path of the deacylating water molecule.  相似文献   
99.
A lipid droplet (LD)-associated protein, perilipin, is a critical regulator of lipolysis in adipocytes. We previously showed that Comparative Gene Identification-58 (CGI-58), a product of the causal gene of Chanarin-Dorfman syndrome, interacts with perilipin on LDs. In this study, we investigated the function of CGI-58 using RNA interference. Notably, CGI-58 knockdown caused an abnormal accumulation of LDs in both 3T3-L1 preadipocytes and Hepa1 hepatoma cells. CGI-58 knockdown did not influence the differentiation of 3T3-L1 adipocytes but reduced the activity of both basal and cAMP-dependent protein kinase-stimulated lipolysis. In vitro studies showed that CGI-58 itself does not have lipase/esterase activity, but it enhanced the activity of adipose triglyceride lipase. Upon lipolytic stimulation, endogenous CGI-58 was rapidly dispersed from LDs into the cytosol along with small particulate structures. This shift in localization depends on the phosphorylation of perilipin, because phosphorylated perilipin lost the ability to bind CGI-58. During lipolytic activation, LDs in adipocytes vesiculate into micro-LDs. Using coherent anti-Stokes Raman scattering microscopy, we pursued the formation of micro-LDs in single cells, which seemed to occur in cytoplasmic regions distant from the large central LDs. CGI-58 is not required for this process. Thus, CGI-58 facilitates lipolysis in cooperation with perilipin and other factors, including lipases.  相似文献   
100.
To study early changes in angiotensin II (Ang II)-induced signaling with post-translational modifications, we analyzed proteins from cultured human coronary smooth muscle cells stimulated with Ang II, using two-dimensional difference gel electrophoresis (2D-DIGE) combined with ProQ Diamond and SYPRO Ruby staining, followed by mass spectrometry or Western blotting. Among 40 proteins identified, peroxiredoxin 2 (Prx2) was oxidized and 58 kDa glucose-regulated protein (GRP58) was phosphorylated after 5 min of Ang II (1 μM) stimulation. Valsartan, a selective Ang II type 1 (AT1) receptor blocker, and N-acetylcysteine, an antioxidant, inhibited both of these modifications, indicating the contribution of AT1 receptor and reactive oxygen species to oxidation of Prx2 and phosphorylation of GRP58 by Ang II.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号