首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38532篇
  免费   1795篇
  国内免费   1223篇
  2023年   498篇
  2022年   771篇
  2021年   1018篇
  2020年   1022篇
  2019年   1394篇
  2018年   1249篇
  2017年   744篇
  2016年   877篇
  2015年   1089篇
  2014年   2206篇
  2013年   2725篇
  2012年   1493篇
  2011年   2247篇
  2010年   1577篇
  2009年   1777篇
  2008年   2009篇
  2007年   2019篇
  2006年   1814篇
  2005年   1590篇
  2004年   1440篇
  2003年   1194篇
  2002年   1079篇
  2001年   708篇
  2000年   595篇
  1999年   632篇
  1998年   669篇
  1997年   534篇
  1996年   518篇
  1995年   482篇
  1994年   438篇
  1993年   365篇
  1992年   332篇
  1991年   287篇
  1990年   258篇
  1989年   227篇
  1988年   220篇
  1987年   223篇
  1986年   189篇
  1985年   276篇
  1984年   389篇
  1983年   324篇
  1982年   334篇
  1981年   269篇
  1980年   278篇
  1979年   254篇
  1978年   198篇
  1977年   153篇
  1976年   128篇
  1975年   113篇
  1974年   113篇
排序方式: 共有10000条查询结果,搜索用时 32 毫秒
11.
We re-engineered a classic tool for mutagenesis and gene expression studies in Gram-negative bacteria. Our modified Tn5-based transposon contains multiple features that allow rapid selection for mutants, direct quantification of gene expression and straightforward cloning of the inactivated gene. The promoter-less gfp-km cassette provides selection and reporter assay depending on the activity of the promoter upstream of the transposon insertion site. The cat gene facilitates positive antibiotic selection for mutants, while the narrow R6Kγ replication origin forces transposition in recipient strains lacking the pir gene and enables cloning of the transposon flanked with the disrupted gene from the chromosome. The suicide vector pCKD100, a plasmid that could be delivered into recipient cells through biparental mating or electroporation, harbours the modified transposon. We used the transposon to mutagenize Pectobacterium versatile KD100, Pseudumonas coronafaciens PC27R and Escherichia coli 35150N. The fluorescence intensities of mutants expressing high GFP could be quantified and detected qualitatively. Transformation efficiency from conjugation ranged from 1600 to 1900 CFU per ml. We sequenced the upstream flanking regions, identified the putative truncated genes and demonstrated the restoration of the GFP phenotype through marker exchange. The mini-Tn5 transposon was also utilized to construct mutant a library of P. versatile for forward genetic screens.  相似文献   
12.
We previously reported the identification of DP-1 isoforms (α and β), which are structurally C-terminus-deleted ones, and revealed the low-level expression of these isoforms. It is known that wild-type DP-1 is degraded by the ubiquitin-proteasome system, but few details are known about the domains concerned with the protein stability/instability for the proteolysis of these DP-1 isoforms. Here we identified the domains responsible for the stability/instability of DP-1. Especially, the DP-1 “Stabilon” domain was a C-terminal acidic motif and was quite important for DP-1 stability. Moreover, we propose that this DP-1 Stabilon may be useful for the stability of other nuclear proteins when fused to them.  相似文献   
13.
Comment on: Rokavec M, et al. Mol Cell 2012; 45:777-89.  相似文献   
14.
The origin of nervous systems is a main theme in biology and its mechanisms are largely underlied by synaptic neurotransmission. One problem to explain synapse establishment is that synaptic orthologs are present in multiple aneural organisms. We questioned how the interactions among these elements evolved and to what extent it relates to our understanding of the nervous systems complexity. We identified the human neurotransmission gene network based on genes present in GABAergic, glutamatergic, serotonergic, dopaminergic, and cholinergic systems. The network comprises 321 human genes, 83 of which act exclusively in the nervous system. We reconstructed the evolutionary scenario of synapse emergence by looking for synaptic orthologs in 476 eukaryotes. The Human–Cnidaria common ancestor displayed a massive emergence of neuroexclusive genes, mainly ionotropic receptors, which might have been crucial to the evolution of synapses. Very few synaptic genes had their origin after the Human–Cnidaria common ancestor. We also identified a higher abundance of synaptic proteins in vertebrates, which suggests an increase in the synaptic network complexity of those organisms.  相似文献   
15.
Transient receptor potential melastatin 4 (TRPM4) is a broadly expressed Ca2+ activated monovalent cation channel that contributes to the pathophysiology of several diseases.For this study, we generated stable CRISPR/Cas9 TRPM4 knockout (K.O.) cells from the human prostate cancer cell line DU145 and analyzed the cells for changes in cancer hallmark functions. Both TRPM4-K.O. clones demonstrated lower proliferation and viability compared to the parental cells. Migration was also impaired in the TRPM4-K.O. cells. Additionally, analysis of 210 prostate cancer patient tissues demonstrates a positive association between TRPM4 protein expression and local/metastatic progression. Moreover, a decreased adhesion rate was detected in the two K.O. clones compared to DU145 cells.Next, we tested three novel TRPM4 inhibitors with whole-cell patch clamp technique for their potential to block TRPM4 currents. CBA, NBA and LBA partially inhibited TRPM4 currents in DU145 cells. However, none of these inhibitors demonstrated any TRPM4-specific effect in the cellular assays.To evaluate if the observed effect of TRPM4 K.O. on migration, viability, and cell cycle is linked to TRPM4 ion conductivity, we transfected TRPM4-K.O. cells with either TRPM4 wild-type or a dominant-negative mutant, non-permeable to Na+. Our data showed a partial rescue of the viability of cells expressing functional TRPM4, while the pore mutant was not able to rescue this phenotype. For cell cycle distribution, TRPM4 ion conductivity was not essential since TRPM4 wild-type and the pore mutant rescued the phenotype.In conclusion, TRPM4 contributes to viability, migration, cell cycle shift, and adhesion; however, blocking TRPM4 ion conductivity is insufficient to prevent its role in cancer hallmark functions in prostate cancer cells.  相似文献   
16.
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.  相似文献   
17.
《Cell reports》2020,30(4):1052-1062.e5
  1. Download : Download high-res image (154KB)
  2. Download : Download full-size image
  相似文献   
18.
Abstract: Phosphorylation of G protein-coupled receptors is considered an important step during their desensitization. In SK-N-BE cells, recently presented as a pertinent model for the studies of the human δ-opioid receptor, pretreatment with the opioid agonist etorphine increased time-dependently the rate of phosphorylation of a 51-kDa membrane protein. Immunological characterization of this protein with an antibody, raised against the amino-terminal region of the cloned human δ-opioid receptor, revealed that it corresponded to the δ-opioid receptor. During prolonged treatment with etorphine, phosphorylation increased as early as 15 min to reach a maximum within 1 h. Phosphorylation and desensitization of adenylyl cyclase inhibition paralleled closely and okadaic acid inhibited the resensitization, a result strongly suggesting that phosphorylation of the δ-opioid receptor plays a prominent role in its rapid desensitization. The increase in phosphorylation of the δ-opioid receptor, as well as its desensitization, was not affected by H7, an inhibitor of protein kinase A and protein kinase C, but was drastically reduced by heparin or Zn2+, known to act as G protein-coupled receptor kinase (GRK) inhibitors. These results are the first to show, on endogenously expressed human δ-opioid receptor, that a close link exists between receptor phosphorylation and agonist-promoted desensitization and that desensitization involves a GRK.  相似文献   
19.
Retinoblastoma-binding protein 1 (RBBP1) is involved in gene regulation, epigenetic regulation, and disease processes. RBBP1 contains five domains with DNA-binding or histone-binding activities, but how RBBP1 specifically recognizes chromatin is still unknown. An AT-rich interaction domain (ARID) in RBBP1 was proposed to be the key region for DNA-binding and gene suppression. Here, we first determined the solution structure of a tandem PWWP-ARID domain mutant of RBBP1 after deletion of a long flexible acidic loop L12 in the ARID domain. NMR titration results indicated that the ARID domain interacts with DNA with no GC- or AT-rich preference. Surprisingly, we found that the loop L12 binds to the DNA-binding region of the ARID domain as a DNA mimic and inhibits DNA binding. The loop L12 can also bind weakly to the Tudor and chromobarrel domains of RBBP1, but binds more strongly to the DNA-binding region of the histone H2A-H2B heterodimer. Furthermore, both the loop L12 and DNA can enhance the binding of the chromobarrel domain to H3K4me3 and H4K20me3. Based on these results, we propose a model of chromatin recognition by RBBP1, which highlights the unexpected multiple key roles of the disordered acidic loop L12 in the specific binding of RBBP1 to chromatin.  相似文献   
20.
The occurrence of a second neoplasm is one of the major obstacles in cancer chemotherapy. The elucidation of the genotoxic effects induced by anti-cancer drugs is considered to be helpful in identifying the degree of cancer risk. Numerous investigations on cancer patients after chemotherapy have demonstrated: (i) an increase in the in vivo somatic cell mutant frequency (Mf) at three genetic loci, including hypoxanthine–guanine phosphoribosyl-transferase (hprt), glycophorin A (GPA), and the T-cell receptor (TCR), and (ii) alterations in the mutational spectra of hprt mutants. However, the time required for and the degree of such changes are quite variable among patients even if they have received the same chemotherapy, suggesting the existence of underlying genetic factor(s). Accordingly, some cancer patients prior to chemotherapy as well as patients with cancer-prone syndrome have been found to show an elevated Mf. Based on the information obtained from somatic cell mutation assays, an individualized chemotherapy should be considered in order to minimize the risk of a second neoplasm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号