首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18481篇
  免费   901篇
  国内免费   562篇
  19944篇
  2023年   302篇
  2022年   442篇
  2021年   521篇
  2020年   561篇
  2019年   735篇
  2018年   590篇
  2017年   380篇
  2016年   379篇
  2015年   457篇
  2014年   983篇
  2013年   1305篇
  2012年   721篇
  2011年   1044篇
  2010年   706篇
  2009年   820篇
  2008年   879篇
  2007年   910篇
  2006年   763篇
  2005年   674篇
  2004年   604篇
  2003年   487篇
  2002年   402篇
  2001年   294篇
  2000年   219篇
  1999年   248篇
  1998年   257篇
  1997年   204篇
  1996年   225篇
  1995年   178篇
  1994年   169篇
  1993年   147篇
  1992年   155篇
  1991年   130篇
  1990年   120篇
  1989年   110篇
  1988年   114篇
  1987年   118篇
  1986年   111篇
  1985年   195篇
  1984年   284篇
  1983年   231篇
  1982年   255篇
  1981年   208篇
  1980年   224篇
  1979年   218篇
  1978年   179篇
  1977年   140篇
  1976年   123篇
  1975年   112篇
  1974年   112篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Congenital scoliosis (CS) is the result of anomalous vertebrae development, but the pathogenesis of CS remains unclear. Long non‐coding RNAs (lncRNAs) have been implicated in embryo development, but their role in CS remains unknown. In this study, we investigated the role and mechanisms of a specific lncRNA, SULT1C2A, in somitogenesis in a rat model of vitamin A deficiency (VAD)‐induced CS. Bioinformatics analysis and quantitative real‐time PCR (qRT‐PCR) indicated that SULT1C2A expression was down‐regulated in VAD group, accompanied by increased expression of rno‐miR‐466c‐5p but decreased expression of Foxo4 and somitogenesis‐related genes such as Pax1, Nkx3‐2 and Sox9 on gestational day (GD) 9. Luciferase reporter and small interfering RNA (siRNA) assays showed that SULT1C2A functioned as a competing endogenous RNA to inhibit rno‐miR‐466c‐5p expression by direct binding, and rno‐miR‐466c‐5p inhibited Foxo4 expression by binding to its 3′ untranslated region (UTR). The spatiotemporal expression of SULT1C2A, rno‐miR‐466c‐5p and Foxo4 axis was dynamically altered on GDs 3, 8, 11, 15 and 21 as detected by qRT‐PCR and northern blot analyses, with parallel changes in Protein kinase B (AKT) phosphorylation and PI3K expression. Taken together, our findings indicate that SULT1C2A enhanced Foxo4 expression by negatively modulating rno‐miR‐466c‐5p expression via the PI3K‐ATK signalling pathway in the rat model of VAD‐CS. Thus, SULT1C2A may be a potential target for treating CS.  相似文献   
992.
Three new 4,5‐seco‐20(10→5)‐abeo‐abietane diterpenoids, 16‐hydroxysalvilenone ( 1 ), 15‐hydroxysalprionin ( 2 ), and 11β,15‐dihydroxysalprionin‐12‐one ( 3 ), and nine known abietane diterpenoids, 4 – 12 , along with one known sempervirane diterpenoid, hispidanol A ( 13 ), were isolated from the aerial parts of Isodon lophanthoides var. graciliflorus. The structures of compounds 1 – 3 were determined on the basis of spectroscopic methods including extensive analysis of NMR and mass spectroscopic data. All diterpenoids were tested for their TNF‐α inhibitory effects on LPS‐induced RAW264.7 cells. Compound 9 (16‐acetoxyhorminone) was the most potent with an IC50 value of 3.97±0.70 μm .  相似文献   
993.
《Reproductive biology》2019,19(2):179-188
Corpus luteum (CL) is an endocrine tissue involved in regulation of reproductive cycle and early pregnancy establishment. In the present study DEAD-box helicase-5 (Ddx5), a member of the DEAD box family of RNA helicases was investigated for its expression, regulation and function in CL of Wistar rats. Ddx5 was expressed in adult rat CL. Primary cell culture from supra-ovulated ovaries were established for in vitro studies. Addition of luteinizing hormone (LH; 100 ng/ml), a luteotrophic factor in primary cell culture, decreased Ddx5 RNA expression (foldchange:0.6 ± 0.075) while prostaglandin alpha (PGF; 1μM), a luteolytic factor caused an increase (foldchange:2.4 ± 0.4) compared to control group. Under in vivo conditions, the administration of PGF or gonadotropin-releasing hormone antagonist; cetrorelix (CET) caused luteolysis as well as an increase in the protein level of Ddx5 (foldchange:1.9 ± 0.27 and 1.4 ± 0.09 viz.; p < 0.05) in CL of adult rats. LH was administered post CET treatment which suppressed Ddx5 protein expression (foldchange:0.8 ± 0.16; p < 0.05) compared to CET treated group. Further, it was observed that the expression of Ddx5 was upregulated (foldchange:1.5 ± 0.23; p < 0.05) in CL during late pregnancy compared to mid pregnancy concomitant to luteolysis in adult rats. Overall, the results suggest for the first time that Ddx5 is expressed in rat CL and regulated by luteolytic and luteotrophic factors in an inverse fashion. Further, the data significantly correlates ddx5 expression to CL regression suggesting involvement of ddx5 in luteolysis. These results suggest a significant role of Ddx5 in female reproduction biology and warrant in depth examination of the function of Ddx5 in CL.  相似文献   
994.
羟基化氨基酸是一种新型氨基酸衍生物,可广泛用作化工材料的前体物及医药合成的中间体。将来源于Nostoc minutum的新型L-亮氨酸5-羟化酶 (NmLEH) 通过重组质粒在大肠杆菌中异源表达。结果表明,在BL21(DE3) 宿主细胞中,诱导温度为25℃,IPTG诱导浓度为0.5mmol/L,诱导10h时,蛋白质表达量最高 (0.45mg/ml);通过Ni-亲和层析和凝胶过滤层析两步分离纯化获得了高度纯化的重组NmLEH蛋白;对NmLEH的酶学性质进行了表征,该酶的最适反应温度为25℃,最适pH 为7.5,在pH 7.0~9.0较为稳定,最适底物为亮氨酸和甲硫氨酸;同源序列分析表明NmLEH属于亚铁和α-酮戊二酸依赖性双加氧酶家族[Fe(II)/αKG-Dos],并预测了该酶的保守催化活性位点(H150、D152、H236);通过同源建模得到了该蛋白质的模拟结构,分析了该蛋白质催化活性中心的形成机制。  相似文献   
995.
Heading date is an important agronomic trait affecting crop yield. The GRAS protein family is a plant‐specific super family extensively involved in plant growth and signal transduction. However, GRAS proteins are rarely reported have a role in regulating rice heading date. Here, we report a GRAS protein DHD1 (Delayed Heading Date1) delays heading and enhances yield in rice. Biochemical assays showed DHD1 physically interacts with OsHAP5C/D both in vitro and in vivo. DHD1 and OsHAP5C/D located in the nucleus and showed that rhythmic expression. Both DHD1 and OsHAP5C/D affect heading date by regulating expression of Ehd1. We propose that DHD1 interacts with OsHAP5C/D to delay heading date by inhibiting expression of Ehd1.  相似文献   
996.
Late‐onset retinal degeneration (L‐ORD) is an autosomal dominant macular degeneration characterized by the formation of sub‐retinal pigment epithelium (RPE) deposits and neuroretinal atrophy. L‐ORD results from mutations in the C1q‐tumor necrosis factor‐5 protein (CTRP5), encoded by the CTRP5/C1QTNF5 gene. To understand the mechanism underlying L‐ORD pathology, we used a human cDNA library yeast two‐hybrid screen to identify interacting partners of CTRP5. Additionally, we analyzed the Bruch's membrane/choroid (BM‐Ch) from wild‐type (Wt), heterozygous S163R Ctrp5 mutation knock‐in (Ctrp5S163R/wt), and homozygous knock‐in (Ctrp5S163R/S163R) mice using mass spectrometry. Both approaches showed an association between CTRP5 and HTRA1 via its C‐terminal PDZ‐binding motif, stimulation of the HTRA1 protease activity by CTRP5, and CTRP5 serving as an HTRA1 substrate. The S163R‐CTRP5 protein also binds to HTRA1 but is resistant to HTRA1‐mediated cleavage. Immunohistochemistry and proteomic analysis showed significant accumulation of CTRP5 and HTRA1 in BM‐Ch of Ctrp5S163R/S163R and Ctrp5S163R/wt mice compared with Wt. Additional extracellular matrix (ECM) components that are HTRA1 substrates also accumulated in these mice. These results implicate HTRA1 and its interaction with CTRP5 in L‐ORD pathology.  相似文献   
997.
Src64 is required for actomyosin contraction during cellularization of the Drosophila embryonic blastoderm. The mechanism of actomyosin ring constriction is poorly understood even though a number of cytoskeletal regulators have been implicated in the assembly, organization, and contraction of these microfilament rings. How these cytoskeletal processes are regulated during development is even less well understood. To investigate the role of Src64 as an upstream regulator of actomyosin contraction, we conducted a proteomics screen to identify proteins whose expression levels are controlled by src64. Global levels of actin are reduced in src64 mutant embryos. Furthermore, we show that reduction of the actin isoform Actin 5C causes defects in actomyosin contraction during cellularization similar to those caused by src64 mutation, indicating that a relatively high level of Actin 5C is required for normal actomyosin contraction and furrow canal structure. However, reduction of Actin 5C levels only slows down actomyosin ring constriction rather than preventing it, suggesting that src64 acts not only to modulate actin levels, but also to regulate the actomyosin cytoskeleton by other means.  相似文献   
998.
Dual‐ion batteries (DIBs) with high operation voltage offer promising candidates for low‐cost clean energy chemistries. However, there still exist tough issues, including structural collapse of the graphite cathode due to solvent co‐intercalation and electrolyte decomposition on the electrode/electrolyte interface, which results in unsatisfactory cyclability and fast battery failure. Herein, Li4Ti5O12 (LTO) modified mesocarbon microbeads (MCMBs) are proposed as a cathode material. The LTO layer functions as a skeleton and offers electrocatalytic active sites for in situ generation of a favorable and compatible cathode electrolyte interface (CEI) layer. The synergetic LTO‐CEI network can change the thermodynamic behavior of the PF6? intercalation process and maintain the structural integrity of the graphite cathode, as a “Great Wall” to protect the cathode from structural collapse and electrolyte decomposition. Such LTO‐CEI reinforced cathode exhibits a prolonged cyclability with 85.1% capacity retention after 2000 cycles even at cut‐off potential of 5.4 V versus Li+/Li. Moreover, the LTO‐modified MCMB (+)//prelithiated MCMB (?) full cell exhibits a high energy density of ≈200 Wh kg?1, remarkably enhanced cyclability with 93.5% capacity retention after 1000 cycles. Undoubtedly, this work offers in‐depth insight into interface chemistry, which can arouse new originality to boost the development of DIBs.  相似文献   
999.
Phosphorus (P) use in global food and bioenergy production needs to become more efficient and sustainable to reduce environmental impacts and conserve a finite and critical resource (Carpenter & Bennett, Environmental Research Letters, 2011, 6, 014009; Springmann et al., Nature, 2018, 562, 519). Sugarcane is one crop with a large P footprint because production is centered on P‐fixing soils with low P availability (Roy et al., Nature Plants, 2016, 2, 16043; Withers et al., Scientific Reports, 2018, 8, 2537). As global demand for processed sugar and bioethanol continues to increase, we advocate that improving P efficiency could become a key sustainability goal for the sugarcane industry. Here, we applied the 5R global P stewardship framework (Withers et al., Ambio, 2015, 44, 193) to identify more sustainable options to manage P in Brazilian sugarcane production. We show that current inputs of P fertilizer to the current crop area could be reduced by over 305 Gg, or 63%, over the next three decades by reducing unnecessary P fertilizer use, better utilization of recyclable bioresources and redesigning recommendation systems. Adoption of these 5R options would save the sugarcane industry in Brazil 528 US$ million and help safeguard global food and energy security.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号