首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18503篇
  免费   894篇
  国内免费   566篇
  19963篇
  2023年   302篇
  2022年   442篇
  2021年   521篇
  2020年   561篇
  2019年   735篇
  2018年   590篇
  2017年   380篇
  2016年   379篇
  2015年   457篇
  2014年   983篇
  2013年   1305篇
  2012年   721篇
  2011年   1045篇
  2010年   706篇
  2009年   820篇
  2008年   880篇
  2007年   910篇
  2006年   763篇
  2005年   674篇
  2004年   604篇
  2003年   487篇
  2002年   402篇
  2001年   294篇
  2000年   220篇
  1999年   248篇
  1998年   257篇
  1997年   204篇
  1996年   225篇
  1995年   178篇
  1994年   169篇
  1993年   147篇
  1992年   156篇
  1991年   131篇
  1990年   120篇
  1989年   110篇
  1988年   115篇
  1987年   118篇
  1986年   112篇
  1985年   197篇
  1984年   284篇
  1983年   231篇
  1982年   256篇
  1981年   209篇
  1980年   225篇
  1979年   220篇
  1978年   181篇
  1977年   141篇
  1976年   123篇
  1975年   112篇
  1974年   113篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP(5) 2-K) catalyzes the synthesis of inositol 1,2,3,4,5,6-hexakisphosphate from ATP and IP(5). Inositol 1,2,3,4,5,6-hexakisphosphate is implicated in crucial processes such as mRNA export, DNA editing, and phosphorus storage in plants. We previously solved the first structure of an IP(5) 2-K, which shed light on aspects of substrate recognition. However, failure of IP(5) 2-K to crystallize in the absence of inositide prompted us to study putative conformational changes upon substrate binding. We have made mutations to residues on a region of the protein that produces a clasp over the active site. A W129A mutant allowed us to capture IP(5) 2-K in its different conformations by crystallography. Thus, the IP(5) 2-K apo-form structure displays an open conformation, whereas the nucleotide-bound form shows a half-closed conformation, in contrast to the inositide-bound form obtained previously in a closed conformation. Both nucleotide and inositide binding produce large conformational changes that can be understood as two rigid domain movements, although local changes were also observed. Changes in intrinsic fluorescence upon nucleotide and inositide binding are in agreement with the crystallographic findings. Our work suggests that the clasp might be involved in enzyme kinetics, with the N-terminal lobe being essential for inositide binding and subsequent conformational changes. We also show how IP(5) 2-K discriminates between inositol 1,3,4,5-tetrakisphosphate and 3,4,5,6-tetrakisphosphate enantiomers and that substrate preference can be manipulated by Arg(130) mutation. Altogether, these results provide a framework for rational design of specific inhibitors with potential applications as biological tools for in vivo studies, which could assist in the identification of novel roles for IP(5) 2-K in mammals.  相似文献   
992.
Human catalase forms a 240-kDa tetrameric complex and degrades H(2) O(2) in peroxisomes. Human catalase is targeted to peroxisomes by the interaction of its peroxisomal targeting signal type 1 (PTS1)-like KANL sequence with the cytosolic PTS1 receptor Pex5p. We show herein that human catalase tetramers are formed in the cytoplasm and that the expression of a PTS signal on each of the four subunits is not necessary for peroxisomal transport. We previously demonstrated that a Pex5p mutant defective in binding to Pex13p, designated Pex5p(Mut234), imports typical PTS1-type proteins but not catalase. This impaired catalase import is not rescued by replacing its C-terminal KANL sequence with a typical PTS1 sequence, SKL, indicating that the failure of catalase import in Mut234-expressing cells is not due to its weak PTS1. In contrast, several enzymatically inactive and monomeric mutants of catalase are efficiently imported in Mut234-expressing cells. Moreover, trimeric chloramphenicol acetyltransferase (CAT) harboring SKL is not imported in Pex5p(Mut234)-expressing cells, but CAT-SKL trimers are transported to peroxisomes in the wild-type cells. These findings suggest that the Pex5p-Pex13p interaction likely plays a pivotal role in the peroxisomal import of folded and oligomeric proteins.  相似文献   
993.
Respiratory complex II oxidizes succinate to fumarate as part of the Krebs cycle and reduces ubiquinone in the electron transport chain. Previous experimental evidence suggested that complex II is not a significant contributor to the production of reactive oxygen species (ROS) in isolated mitochondria or intact cells unless mutated. However, we find that when complex I and complex III are inhibited and succinate concentration is low, complex II in rat skeletal muscle mitochondria can generate superoxide or H(2)O(2) at high rates. These rates approach or exceed the maximum rates achieved by complex I or complex III. Complex II generates these ROS in both the forward reaction, with electrons supplied by succinate, and the reverse reaction, with electrons supplied from the reduced ubiquinone pool. ROS production in the reverse reaction is prevented by inhibition of complex II at either the ubiquinone-binding site (by atpenin A5) or the flavin (by malonate), whereas ROS production in the forward reaction is prevented by malonate but not by atpenin A5, showing that the ROS from complex II arises only from the flavin site (site II(F)). We propose a mechanism for ROS production by complex II that relies upon the occupancy of the substrate oxidation site and the reduction state of the enzyme. We suggest that complex II may be an important contributor to physiological and pathological ROS production.  相似文献   
994.
Zhong X  Liu J  Lu F  Wang Y  Zhao Y  Dong S  Leng X  Jia J  Ren H  Xu C  Zhang W 《Cell biology international》2012,36(10):937-943
Nuclear Ca2+ plays a pivotal role in the regulation of gene expression. IP3 (inositol-1,4,5-trisphosphate) is an important regulator of nuclear Ca2+. We hypothesized that the CaR (calcium sensing receptor) stimulates nuclear Ca2+ release through IICR (IP3-induced calcium release) from perinuclear stores. Spontaneous Ca2+ oscillations and the spark frequency of nuclear Ca2+ were measured simultaneously in NRVMs (neonatal rat ventricular myocytes) using confocal imaging. CaR-induced nuclear Ca2+ release through IICR was abolished by inhibition of CaR and IP3Rs (IP3 receptors). However, no effect on the inhibition of RyRs (ryanodine receptors) was detected. The results suggest that CaR specifically modulates nuclear Ca2+ signalling through the IP3R pathway. Interestingly, nuclear Ca2+ was released from perinuclear stores by CaR activator-induced cardiomyocyte hypertrophy through the Ca2+-dependent phosphatase CaN (calcineurin)/NFAT (nuclear factor of activated T-cells) pathway. We have also demonstrated that the activation of the CaR increased the NRVM protein content, enlarged cell size and stimulated CaN expression and NFAT nuclear translocation in NRVMs. Thus, CaR enhances the nuclear Ca2+ transient in NRVMs by increasing fractional Ca2+ release from perinuclear stores, which is involved in cardiac hypertrophy through the CaN/NFAT pathway.  相似文献   
995.
Dysregulation of iron homeostasis is involved in the pathological process of Alzheimer's disease (AD). We have recently reported that divalent metal transporter 1 (DMT1) is upregulated in an AD transgenic mouse brain, and that silencing of DMT1, which reduces cellular iron influx, results in inhibition of amyloidogenesis in vitro, suggesting a potential target of DMT1 for AD therapy. In the present study, we tested the hypothesis that inhibition of DMT1 with ebselen, a DMT1 transport inhibitor, could affect tau phosphorylation. Human neuroblastoma SH-SY5Y cells were pre-treated with ebselen and then treated with ferrous sulfate (dissolved in ascorbic acid), and the effects of ebselen on tau phosphorylation and the relative signaling pathways were examined. Our results showed that ebselen decreased iron influx, reduced iron-induced ROS production, inhibited the activities of cyclin-dependent kinase 5 and glycogen synthase kinase 3β, and ultimately attenuated the levels of tau phosphorylation at the sites of Thr205, Ser396 and Thr231. The present study indicates that the neuroprotective effect of ebselen on AD is not only related to its antioxidant activity as reported previously, but is also associated with a reduction in tau phosphorylation by inhibition of DMT1.  相似文献   
996.
王申捷  孙凡  朱亮 《生物磁学》2014,(3):571-574
5-羟色胺(5-hydroxy tryptamine,5-HT)是中枢及外周神经系统中一种重要的神经递质。5-羟色胺转运体(5-HT transporter,5-HTT)可将5.HT再摄取,降低细胞外5-HT浓度,从而调节神经信号传导。5-HTT异常在某些精神疾病的发病中起重要作用。近年来选择性5.羟色胺再摄取抑制剂(selective serotonin reuptake inhibitors,SSRIs)在临床上的应用日趋广泛,如治疗抑郁症、焦虑症、抑郁和焦虑共病等常见的精神疾病。氟西汀、帕罗西汀、舍曲林、氟伏沙明和西酞普兰是目前临床上最常用的五种SSRIs,被誉为抗抑郁药的“五朵金花”。本文详细介绍近年来在临床上药物治疗抑郁症取得的成果以及这类药物的药效学、药动学、不良反应和相互作用等,并简要介绍SSRIs在其它疾病领域取得的应用进展。  相似文献   
997.
Cytochrome P450 CYP17A1 catalyzes a series of reactions that lie at the intersection of corticoid and androgen biosynthesis and thus occupies an essential role in steroid hormone metabolism. This multifunctional enzyme catalyzes the 17α-hydroxylation of Δ4- and Δ5-steroids progesterone and pregnenolone to form the corresponding 17α-hydroxy products through its hydroxylase activity, and a subsequent 17,20-carbon–carbon scission of pregnene-side chain produce the androgens androstenedione (AD) and dehydroepiandrosterone (DHEA). While the former hydroxylation reaction is believed to proceed through a conventional “Compound I” rebound mechanism, it has been suggested that the latter carbon cleavage is initiated by an iron-peroxy intermediate. We report on the role of Thr306 in CYP17 catalysis. Thr306 is a member of the conserved acid/alcohol pair thought to be essential for the efficient delivery of protons required for hydroperoxoanion heterolysis and formation of Compound I in the cytochromes P450. Wild type and T306A CYP17A1 self-assembled in Nanodiscs were used to quantitate turnover and coupling efficiencies of CYP17’s physiological Δ4- and Δ5-substrates. We observed that T306A co-incorporated in Nanodiscs with its redox partner cytochrome P450 oxidoreductase, coupled NADPH only by 0.9% and 0.7% compared to the wild type (97% and 22%) during the conversion of pregnenolone and progesterone, respectively, to the corresponding 17-OH products. Despite increased oxidation of pyridine nucleotide, hydroxylase activity was drastically diminished in the T306A mutant, suggesting a high degree of uncoupling in which reducing equivalents and protons are funneled into non-productive pathways. This is similar to previous work with other P450 catalyzed hydroxylation. However, catalysis of carbon–carbon bond scission by the T306A mutant was largely unimpeded by disruption of the CYP17A1 acid-alcohol pair. The unique response of CYP17A1 lyase activity to mutation of Thr306 is consistent with a reactive intermediate formed independently of proton delivery in the active site, and supports involvement of a nucleophilic peroxo-anion rather than the traditional Compound I in catalysis.  相似文献   
998.
Sine oculis homeobox homolog 1 (SIX1) has been supposed to be correlated with the metastasis and poor prognosis of several malignancies. However, the effect of SIX1 on the metastatic phenotype of tumor cells and the underlying mechanisms were still unclear to date. Here we report that SIX1 can promote α5β1-mediated metastatic capability of cervical cancer cells. SIX1 promoted the expression of α5β1 integrin to enhance the adhesion capacity of tumor cells in vitro and tumor cell arrest in circulation in vivo. Moreover, higher expression of SIX1 in tumor cells resulted in the increased production of active MMP-2 and MMP-9, up-regulation of anti-apoptotic genes (BCL-XL and BCL2) and down-regulation of pro-apoptotic genes (BIM and BAX), thus promoting the invasive migration and anoikis-resistance of tumor cells. Importantly, blocking α5β1 abrogated the regulatory effect of SIX1 on the expression of these genes, and also abolished the promotional effect of SIX1 on invasive capability of tumor cells. Furthermore, knock-down of α5 could abolish the promoting effect of SIX1 on the development of metastatic lesions in both experimental and spontaneous metastasis model. Therefore, by up-regulating α5β1 expression, SIX1 not only promoted the adhesion capacity, but also augmented ECM-α5β1-mediated regulation of gene expression to enhance the metastatic potential of cervical cancer cells. These results suggest that SIX1/α5β1 might be considered as valuable marker for metastatic potential of cervical cancer cells, or a therapeutic target in cervical cancer treatment.  相似文献   
999.
We recently isolated a polypeptide from the earthworm Lumbricus terrestris that is structurally similar to defensin, a well-known antibacterial peptide. An 11-mer antibacterial peptide (NH2-RNRRWCIDQQA), designated Lumbricusin, was synthesized based on the amino acid sequence of the isolated polypeptide. Since we previously reported that CopA3, a dung beetle peptide, enhanced neuronal cell proliferation, we here examined whether Lumbricusin exerted neurotropic and/or neuroprotective effects. Lumbricusin treatment induced a time-dependent increase (∼51%) in the proliferation of human neuroblastoma SH-SY5Y cells. Lumbricusin also significantly inhibited the apoptosis and decreased viability induced by treatment with 6-hydroxy dopamine, a Parkinson’s disease-mimicking agent. Immunoblot analyses revealed that Lumbricusin treatment increased ubiquitination of p27Kip1 protein, a negative regulator of cell-cycle progression, in SH-SY5Y cells, and markedly promoted its degradation. Notably, adenoviral-mediated over-expression of p27Kip1 significantly blocked the antiapoptotic effect of Lumbricusin in 6-hydroxy dopamine-treated SH-SY5Y cells. These results suggest that promotion of p27Kip1 degradation may be the main mechanism underlying the neuroprotective and neurotropic effects of Lumbricusin.  相似文献   
1000.
The localization of yellow fluorescent protein (YFP)-tagged HSP70 proteins was employed to identify stress-sensitive sites in human neurons following temperature elevation. Stable lines of human SH-SY5Y neuronal cells were established that expressed YFP-tagged protein products of the human inducible HSP70 genes HSPA6 (HSP70B′) and HSPA1A (HSP70-1). Following a brief period of thermal stress, YFP-tagged HSPA6 and HSPA1A rapidly appeared at centrioles in the cytoplasm of human neuronal cells, with HSPA6 demonstrating a more prolonged signal compared to HSPA1A. Each centriole is composed of a distal end and a proximal end, the latter linking the centriole doublet. The YFP-tagged HSP70 proteins targeted the proximal end of centrioles (identified by γ-tubulin marker) rather than the distal end (centrin marker). Centrioles play key roles in cellular polarity and migration during neuronal differentiation. The proximal end of the centriole, which is involved in centriole stabilization, may be stress-sensitive in post-mitotic, differentiating human neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号