全文获取类型
收费全文 | 43901篇 |
免费 | 1755篇 |
国内免费 | 2177篇 |
专业分类
47833篇 |
出版年
2024年 | 208篇 |
2023年 | 591篇 |
2022年 | 846篇 |
2021年 | 1007篇 |
2020年 | 1142篇 |
2019年 | 1441篇 |
2018年 | 1248篇 |
2017年 | 992篇 |
2016年 | 1039篇 |
2015年 | 1099篇 |
2014年 | 2210篇 |
2013年 | 2899篇 |
2012年 | 1822篇 |
2011年 | 2311篇 |
2010年 | 1779篇 |
2009年 | 2038篇 |
2008年 | 2299篇 |
2007年 | 2310篇 |
2006年 | 1954篇 |
2005年 | 1751篇 |
2004年 | 1628篇 |
2003年 | 1438篇 |
2002年 | 1201篇 |
2001年 | 884篇 |
2000年 | 783篇 |
1999年 | 798篇 |
1998年 | 767篇 |
1997年 | 653篇 |
1996年 | 600篇 |
1995年 | 564篇 |
1994年 | 532篇 |
1993年 | 464篇 |
1992年 | 433篇 |
1991年 | 359篇 |
1990年 | 327篇 |
1989年 | 307篇 |
1988年 | 252篇 |
1987年 | 261篇 |
1986年 | 234篇 |
1985年 | 409篇 |
1984年 | 584篇 |
1983年 | 415篇 |
1982年 | 455篇 |
1981年 | 386篇 |
1980年 | 386篇 |
1979年 | 365篇 |
1978年 | 302篇 |
1977年 | 231篇 |
1976年 | 212篇 |
1974年 | 199篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Type 2C protein phosphatase (PP2C) is a monomeric enzyme and requires Mg(2+) or Mn(2+) for its activity. Up to now, seven PP2C-like genes have been identified in the genome of Saccharomyces cerevisiae. However, the protein encoded by the sixth PP2C-like gene, YCR079w, has not been demonstrated to have PP2C activity. In this study, we show that YCR079w confers a rapamycin-resistant function in yeast cells, and we also demonstrate that the YCR079w-encoded protein exhibits characteristics of a typical PP2C. Therefore, YCR079w encodes the sixth PP2C, PTC6, in budding yeast. 相似文献
102.
103.
Mevalonate diphosphate decarboxylase (MDD) catalyzes the ATP-dependent decarboxylation of mevalonate 5-diphosphate (MDP) to form isopentenyl pyrophosphate, a ubiquitous precursor for isoprenoid biosynthesis. MDD is a poorly understood component of this important metabolic pathway. Complementation of a temperature-sensitive yeast mutant by the putative mdd genes of Trypanosoma brucei and Staphylococcus aureus provides proof-of-function. Crystal structures of MDD from T. brucei (TbMDD, at 1.8 A resolution) and S. aureus (SaMDD, in two distinct crystal forms, each diffracting to 2.3 A resolution) have been determined. Gel-filtration chromatography and analytical ultracentrifugation experiments indicate that TbMDD is predominantly monomeric in solution while SaMDD is dimeric. The new crystal structures and comparison with that of the yeast Saccharomyces cerevisiae enzyme (ScMDD) reveal the structural basis for this variance in quaternary structure. The presence of an ordered sulfate in the structure of TbMDD reveals for the first time details of a ligand binding in the MDD active site and, in conjunction with well-ordered water molecules, comparisons with the related enzyme mevalonate kinase, structural and biochemical data derived on ScMDD and SaMDD, allows us to model a ternary complex with MDP and ATP. This model facilitates discussion of the molecular determinants of substrate recognition and contributions made by specific residues to the enzyme mechanism. 相似文献
104.
The ATP binding cassette transporters ABCG5 and ABCG8 are indispensable for hepatobiliary cholesterol transport. In this study, we investigated the specificity of the heterodimer for cholesterol acceptors. Dog gallbladder epithelial cells were mono- or double-transfected with lentiviral mouse Abcg5 and Abcg8 vectors. Double-transfected cells showed increased efflux to different bile salt (BS) species, while mono-transfected cells did not show enhanced efflux. The efflux was initiated at micellar concentrations and addition of phosphatidylcholine increased efflux. Cholesterol secretion was highly BS dependent, whereas other cholesterol acceptors such as ApoAI, HDL or methyl-beta-cyclodextrin did not elicit Abcg5/g8 dependent cholesterol secretion. 相似文献
105.
LINGLI LIU JOHN S. KING FITZGERALD L. BOOKER† CHRISTIAN P. GIARDINA‡ H. LEE ALLEN SHUIJIN HU§ 《Global Change Biology》2009,15(2):441-453
Elevated CO2 has been shown to stimulate plant productivity and change litter chemistry. These changes in substrate availability may then alter soil microbial processes and possibly lead to feedback effects on N availability. However, the strength of this feedback, and even its direction, remains unknown. Further, uncertainty remains whether sustained increases in net primary productivity will lead to increased long‐term C storage in soil. To examine how changes in litter chemistry and productivity under elevated CO2 influence microbial activity and soil C formation, we conducted a 230‐day microcosm incubation with five levels of litter addition rate that represented 0, 0.5, 1.0, 1.4 and 1.8 × litterfall rates observed in the field for aspen stand growing under control treatments at the Aspen FACE experiment in Rhinelander, WI, USA. Litter and soil samples were collected from the corresponding field control and elevated CO2 treatment after trees were exposed to elevated CO2 (560 ppm) for 7 years. We found that small decreases in litter [N] under elevated CO2 had minor effects on microbial biomass carbon, microbial biomass nitrogen and dissolved inorganic nitrogen. Increasing litter addition rates resulted in linear increase in total C and new C (C from added litter) that accumulated in whole soil as well as in the high density soil fraction (HDF), despite higher cumulative C loss by respiration. Total N retained in whole soil and in HDF also increased with litter addition rate as did accumulation of new C per unit of accumulated N. Based on our microcosm comparisons and regression models, we expected that enhanced C inputs rather than changes in litter chemistry would be the dominant factor controlling soil C levels and turnover at the current level of litter production rate (230 g C m−2 yr−1 under ambient CO2). However, our analysis also suggests that the effects of changes in biochemistry caused by elevated CO2 could become significant at a higher level of litter production rate, with a trend of decreasing total C in HDF, new C in whole soil, as well as total N in whole soil and HDF. 相似文献
106.
Shamshad Cockcroft 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2009,1791(9):905-912
Phosphatidic acid (PA) production by receptor-stimulated phospholipase D is believed to play an important role in the regulation of cell function. The second messenger function of PA remains to be elucidated. PA can bind and affect the activities of different enzymes and here we summarise the current status of activation of Type I phosphatidylinositol 4-phosphate 5-kinase by PA. Type 1 phosphatidylinositol 4-phosphate 5-kinase is also regulated by ARF proteins as is phospholipase D and we discuss the contributions of ARF and PA towards phosphatidylinositol(4,5)bisphosphate synthesis at the plasma membrane. 相似文献
107.
Shu-mei Wei Chuan-gao Xie Yasuhito Abe 《Biochemical and biophysical research communications》2009,384(3):352-356
ADP-ribosylation factor (ARF) like 7 (ARL7, also named ARL4C) is a member of ARL family and recent studies showed that it is involved in the AI-dependent cholesterol secretion process. Yet its biological function remains largely unknown. Using a MALDI-TOF/MS analysis, we identified α-tubulin interacted with ARL7. The interaction was confirmed by GST pull-down assay and co-immunoprecipitation in renal carcinoma cell 786-O in which we found the endogenous ARL7 is expressed. This is the second ARL member found interacting with tubulin after ARL8. In addition, ARL7Q72L, a GTP-binding form, promoted the transferrin transport from early endosome to recycling endosome significantly. The above data suggested that ARL7 might modulate the intracellular vesicular transport via interaction with microtubules. 相似文献
108.
Palatine tonsils are continuously exposed to microorganisms and antigens and secrete antimicrobial peptides as a first line of defense. S100A7 is a protein with antimicrobial and chemotactic properties. Our aim was to investigate how the expression of S100A7 in human palatine tonsils is affected by inflammatory processes. Tonsils obtained from 109 patients undergoing tonsillectomy were divided into groups of infected and noninfected as well as allergic and nonallergic, based on the results from tonsillar core culture tests and Phadiatop analysis, respectively. Western blot and immunohistochemistry were used to assess protein expression and real-time PCR was used to quantify mRNA levels. To explore the induction of S100A7, tonsils were stimulated with lipopolysaccharide in vitro. The immunohistochemical staining for S100A7 was most intense in the tonsillar epithelium, but the protein was also detected in B- and T-cell regions, which was confirmed with Western blot on isolated B and T cells. The S100A7 expression appeared to be the highest in CD8+ T cells. Reduced mRNA levels of S100A7 were detected in infected tonsils as well as in tonsils from allergic individuals. In vitro stimulation of tonsils with lipopolysaccharide did not have any effect on the expression. The results suggest a role for S100A7 in recurrent tonsillitis and allergic disease. 相似文献
109.
ALA对遮荫条件下西瓜幼苗强光抑制的保护效应 总被引:3,自引:0,他引:3
以遮荫生长的盆栽西瓜幼苗为材料,研究了100mg/L5-氨基乙酰丙酸(5-aminolevulinic acid,ALA)处理对暗适应叶片转入强光下叶绿素荧光特性的影响.结果显示,遮荫能显著提高暗适应叶片的Fo,降低Fv/Fm和Fv/Fo;正常光照下生长的植株叶片暗适应后转入1500μmol·m-2·s-1作用光强下5min的ΦPSⅡ、qP和Pc分别为0.176、0.399和0.180,约为600μmol·m-2·s-1作用光强下的62%、72%和64%;而遮荫下生长的幼苗叶片暗适应后转入1500μmol·m-2·s-1作用光强下的ΦPSⅡ、qP和Pc分别为0.089、0.301和0.089,仅为600μmol·m-2·s-1作用光强的40%、66%和40%;遮荫还显著降低西瓜叶片暗适应后转入强光1500μmol·m-2·s-1的PCR和qL,同时提高L(PFD).ALA处理能提高遮荫西瓜幼苗叶片PCR、Pc、qL和Hd等荧光参数,降低Ex、ΦNO和L(PFD);SOD活性抑制剂DDC处理降低PCR、Pc、qL和Hd等荧光参数,而ALA处理可以逆转DDC的抑制效应;ALA处理能提高西瓜幼苗叶片SOD、POD和APX活性.研究发现,遮荫导致西瓜幼苗光抑制程度加重,ALA通过增强PSⅠ附近SOD等抗氧化酶活性,促进水-水循环,增加热耗散,减轻光抑制,提高西瓜幼苗叶片的光化学效率,从而对强光下的光合作用起到保护作用. 相似文献
110.
Nikita A. Kuznetsov Nicolai G. Faleev Alexandra A. Kuznetsova Elena A. Morozova Svetlana V. Revtovich Natalya V. Anufrieva Alexei D. Nikulin Olga S. Fedorova Tatyana V. Demidkina 《The Journal of biological chemistry》2015,290(1):671-681
Methionine γ-lyase (MGL) catalyzes the γ-elimination of l-methionine and its derivatives as well as the β-elimination of l-cysteine and its analogs. These reactions yield α-keto acids and thiols. The mechanism of chemical conversion of amino acids includes numerous reaction intermediates. The detailed analysis of MGL interaction with glycine, l-alanine, l-norvaline, and l-cycloserine was performed by pre-steady-state stopped-flow kinetics. The structure of side chains of the amino acids is important both for their binding with enzyme and for the stability of the external aldimine and ketimine intermediates. X-ray structure of the MGL·l-cycloserine complex has been solved at 1.6 Å resolution. The structure models the ketimine intermediate of physiological reaction. The results elucidate the mechanisms of the intermediate interconversion at the stages of external aldimine and ketimine formation. 相似文献