首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7727篇
  免费   483篇
  国内免费   308篇
  2024年   13篇
  2023年   98篇
  2022年   138篇
  2021年   204篇
  2020年   231篇
  2019年   355篇
  2018年   311篇
  2017年   195篇
  2016年   199篇
  2015年   222篇
  2014年   475篇
  2013年   620篇
  2012年   329篇
  2011年   483篇
  2010年   314篇
  2009年   300篇
  2008年   333篇
  2007年   384篇
  2006年   340篇
  2005年   298篇
  2004年   261篇
  2003年   243篇
  2002年   198篇
  2001年   142篇
  2000年   106篇
  1999年   146篇
  1998年   104篇
  1997年   121篇
  1996年   116篇
  1995年   87篇
  1994年   83篇
  1993年   65篇
  1992年   73篇
  1991年   77篇
  1990年   76篇
  1989年   64篇
  1988年   62篇
  1987年   66篇
  1986年   61篇
  1985年   68篇
  1984年   84篇
  1983年   62篇
  1982年   84篇
  1981年   47篇
  1980年   51篇
  1979年   42篇
  1978年   19篇
  1977年   14篇
  1976年   17篇
  1972年   10篇
排序方式: 共有8518条查询结果,搜索用时 156 毫秒
41.
Chronic treatment of hamsters with estradiol for several months has previously been shown to decrease the specific content of cytochrome P450 in the kidney, a target of hormonal carcinogenesis, but not in liver. The reason for this decrease in metabolic enzyme activity is unknown and has been examined in this investigation. We now report that the decrease in specific content of renal cytochrome P450 by 73% in response to estradiol was not affected by co-treatment with tamoxifen for 1 month. The subcutaneous infusion of 250 μg/day estradiol for 7 days lowered renal cytochrome P450 by 71% from control values and was therefore used for further mechanistic studies. This treatment decreased renal activities of estradiol 2- or 4-hydroxylase by 77 to 80%, of 7-ethoxycoumarin-O-deethylase by 66% of control values, respectively, and completely eliminated aryl hydrocarbon hydroxylase activities, whereas liver enzymes remained unaffected. After 7 days of infusion of estradiol, fluorescent products of lipid peroxidation were more than doubled in hamster kidney but remained unchanged in liver. The possibility of enzyme destruction by binding of estradiol 2,3-quinone to metabolizing enzymes was investigatedin vitro. In the presence of 2-hydroxyestradiol, cumene hydroperoxide, and microsomes, conditions known to favor the oxidation of the steroid to quinone, the binding of catechol estrogen metabolite to microsomal protein increased 60 fold over control values in the absence of cofactor. Purified rat liver cytochrome P450c also oxidized 2-hydroxyestradiol to 2,3-estradiol quinone. The rate of oxidation was linear for the first 2–3 min, but thereafter decreased with time. Under these incubation conditions, irreversible binding of catechol estrogen metabolite to cytochrome P450c increased for the first 2–3 min and then remained at this plateau level. It was concluded that enzyme destruction by a reactive estrogen metabolite or by lipid peroxides may be a major reason for the organ-specific decrease in cytochrome P450 enzymes in kidneys of estrogen-treated hamsters.  相似文献   
42.
Formation of metabolic intermediate (MI) complexes was studied with the enantiomers of amphetamine, 1-phenyl-2-pentanamine, N-hydroxyamphetamine, and 2-nitroso-1-phenylpropane (the C-nitroso analogue of amphetamine). Three different enzyme systems were used; liver microsomes from phenobarbital pretreated rats and two reconstituted systems containing the P450 2B1 and P450 2C11 forms of cytochrome P-450. Enantioselective complex formation in microsomes was shown for the amines and the nitroso compound, but not for the hydroxylamine. The highly purified P450 2B1 system formed the MI complex with all substrates tested, and the enantioselectivity observed with the microsomal system was reproduced. In the P450 2C11 system the nitroso compounds were completely inactive, whereas the enantiomers of N-hydroxyamphetamine still produced the complex at a high rate. Changes in temperature were shown to affect (R)-2-nitroso-1-phenylpropane more than its enantiomer. Both enantiomers showed biphasic Arrhenius plots for MI complex formation in microsomes (breaks around 22 degrees C), but the activation energies of the (R)-isomer were about five times higher than those of the (S)-isomer. A theory is presented which suggests different modes of interaction with the active site of P-450 to account for the different behaviour of the various substrates.  相似文献   
43.
Summary Metabolism of sulfonylurea herbicides by Streptomyces griseolus ATCC 11796 is carried out via two cytochromes P-450, P-450SU1 and P-450SU2. Mutants of S. griseolus, selected by their reduced ability to metabolize a fluorescent sulfonylurea, do not synthesize cytochrome P-450SU1 when grown in the presence of sulfonylureas. Genetic evidence indicated that this phenotype was the result of a deletion of > 15 kb of DNA, including the structural genes for cytochrome P-450SU1 and an associated ferredoxin Fd-1 (suaC and suaB, respectively). In the absence of this monooxygenase system, the mutants described here respond to the presence of sulfonylureas or phenobarbital in the growth medium with the expression of only the suhC,B gene products (cytochrome P-450SU2 and Fd-2), previously observed only as minor components in wild-type cells treated with sulfonylurea. These strains have enabled an analysis of sulfonylurea metabolism mediated by cytochrome P-450SU2 in the absence of P-450SU1, yielding an in vivo delineation of the roles of the two different cytochrome P-450 systems in herbicide metabolism by S. griseolus.  相似文献   
44.
Summary Sporobolus virginicus (L.) Kunth is a halophytic grass native to tropical and warm temperate coasts throughout the world. A rhizomatous perennial with erect culms,S. virginicus occurs as two genetically distinct growth forms, which are designated by their characteristic habitats as marsh and dune. What accounts for the specific distribution and maintenance of two separate ecotypes ofS. virginicus is not known. The present study examined the effects of seawater salinity on several morphological and physiological responses of hydroponically cultivated marsh and dune plants to determine whether differential tolerance to substrate salinity might contribute to the observed pattern of habitation. Both marsh and dune form plants survived prolonged exposure to full-strength seawater and reproduced vegetatively via culms and rhizomes. Salinity-induced reductions in culm height, internode length, and leaf size led to a miniaturization of marsh and dune plants. Sodium ion levels were low (<1.0 mmol/g dry weight) in various organs of salinized plants irrespective of ecotype, and potassium ion content increased in all salt-challenged plants, as did quarternary ammonium compounds and proline. Significant differences, however, between marsh and dune plants with respect to the effects of salinity on resource allocation, flowering phenology, and protein composition suggested that external salt concentration has a role in determining ecotype distribution.  相似文献   
45.
46.
Summary An inhibitory activity to (Na,K)ATPase was found in cell extracts of the brine shrimp, Artemia salina, irrespective of its developmental stages. Organic solvent extraction together with gas chromatographic analysis reveals that the inhibitory activity is due to long-chain, non-esterified fatty acids and their derivatives. Unsaturated fatty acids, especially with cis-configuration, are more effective in inhibition than saturated ones.Abbreviations ATPase adenosine triphosphatase - EDTA ethylenediamine-tetraacetate - TLC thin-layer chromatography  相似文献   
47.
Cytochrome P450 is known to cause carcinogen activation and correspondingly increased cancer risk in animal models. In order to determine whether P450 in the colon may be involved in cancer development in the human, the human colon cell line LS174T was examined for the presence of various cytochromes P450. Two isozymes of P450 were identified in the human cell line. Expression of P450IAl or IA2 was increased by treatment of the cell line with benzanthracene; the induction was demonstrated by an increase in RNA hybridizing to a probe for P4501Al and by ethoxyresorufin deethylation activity. Western analysis of microsomes isolated from human colon tissue also demonstrated the presence of P4501A1, as well as a form which cross-reacted to an antibody to human P450IIC9. Another isozyme, P450IIE1, was identified by polymerase chain reaction amplification of RNA from LS174T cells. These results underscore the presence of cytochromes P450 in colonic tissue and provide a basis for the involvement of isozyme-specific P450 mediated reactions in carcinogenesis of the colon.Some of the data presented here were taken from a thesis submitted by D.K.H. in partial fulfillment of the requirements for the Ph.D. degree in the University of Texas Graduate School of Biomedical Sciences.  相似文献   
48.
Summary The gap junction morphology was quantified in freeze-fracture replicas prepared from rat auricles that had been either quickly frozen at 6 K or chemically fixed by glutaraldehyde, in a state of normal cell-to-cell conduction or in a state of electrical uncoupling. The general appearance of the gap junctions was similar after both preparative procedures. A quantitative analysis of three gap junctional dimensions provided the following measurements in the quickly frozen conducting auricles (mean±sd): (a) P-face particles' diameter 8.27±0.74 nm (n =5709), (b) P-face particles' center-to-center distance 10.78±2.12 nm (n=4800), and (c) E-face pits' distance 9.99±2.19 nm (n=1600). Corresponding values obtained from chemically fixed tissues were decreased by about 3% for the particle's diameter and about 5% for the particles' and pits' distances. Electrical uncoupling by the action of either 1 mM 2–4-dinitrophenol (DNP), or 3.5 mMn-Heptan-1-ol (heptanol), induced a decrease of the particle's diameter, which amounted to –0.69±0.01 nm (mean ±se) in the quickly frozen preparations and –0.71±0.01 nm in the chemically fixed ones. The particles' distance was decreased by –0.96±0.04 nm in the quickly frozen samples and by –0.90 ±0.03 nm in the chemically fixed ones and the E-face pits' distance was similarly reduced. All differences were statistically significant (P<0.001 for all dimensions). Electrical recoupling after the heptanol effect promoted a return of these gap junctional dimensions towards normal values, which was about 50% complete within 20 min. It is concluded that very similar morphological alterations of the gap junctional structure are induced in the mammalian heart by different treatments promoting electrical uncoupling and that these conformational changes appear independently of the preparative procedure. The suggestion that the observed decrease of the particles' diameter is genuinely related to the closing mechanism of the unit cell-to-cell channel set in thei centers is thus confirmed.  相似文献   
49.
Summary The net loss of KCl observed in Ehrlich ascites cells during regulatory volume decrease (RVD) following hypotonic exposure involves activation of separate conductive K+ and Cl transport pathways. RVD is accelerated when a parallel K+ transport pathway is provided by addition of gramicidin, indicating that the K+ conductance is rate limiting. Addition of ionophore A23187 plus Ca2+ also activates separate K+ and Cl transport pathways, resulting in a hyperpolarization of the cell membrane. A calculation shows that the K+ and Cl conductance is increased 14-and 10-fold, respectively. Gramicidin fails to accelerate the A23187-induced cell shrinkage, indicating that the Cl conductance is rate limiting. An A23187-induced activation of42K and36Cl tracer fluxes is directly demonstrated. RVD and the A23187-induced cell shrinkage both are: (i) inhibited by quinine which blocks the Ca2+-activated K+ channel. (ii) unaffected by substitution of NO 3 or SCN for Cl, and (iii) inhibited by the anti-calmodulin drug pimozide. When the K+ channel is blocked by quinine but bypassed by addition of gramicidin, the rate of cell shrinkage can be used to monitor the Cl conductance. The Cl conductance is increased about 60-fold during RVD. The volume-induced activation of the Cl transport pathway is transient, with inactivation within about 10 min. The activation induced by ionophore A23187 in Ca2+-free media (probably by release of Ca2+ from internal stores) is also transient, whereas the activation is persistent in Ca2+-containing media. In the latter case, addition of excess EGTA is followed by inactivation of the Cl transport pathway. These findings suggest that a transient increase in free cytosolic Ca2+ may account for the transient activation of the Cl transport pathway. The activated anion transport pathway is unselective, carrying both Cl, Br, NO 3 , and SCN. The anti-calmodulin drug pimozide blocks the volume- or A23187-induced Cl transport pathway and also blocks the activation of the K+ transport pathway. This is demonstrated directly by42K flux experiments and indirectly in media where the dominating anion (SCN) has a high ground permeability. A comparison of the A23187-induced K+ conductance estimated from42K flux measurements at high external K+, and from net K flux measurements suggests single-file behavior of the Ca2+-activated K+ channel. The number of Ca2+-activated K+ channels is estimated at about 100 per cell.  相似文献   
50.
The spontaneous release of [3H] gamma-aminobutyric acid ([3H]GABA) in various areas of rat brain injected with [3H]putrescine was examined using a push-pull perfusion technique. The release in a 25-min perfusate was highest in the caudate-putamen. The effect of high K+ stimulation on the release of [3H]GABA formed from [3H]putrescine was examined in the caudate-putamen. The release was enhanced by high K+ solution in a Ca2+-dependent manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号