首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22841篇
  免费   1351篇
  国内免费   795篇
  2023年   357篇
  2022年   542篇
  2021年   625篇
  2020年   641篇
  2019年   874篇
  2018年   901篇
  2017年   560篇
  2016年   557篇
  2015年   661篇
  2014年   1395篇
  2013年   1773篇
  2012年   1043篇
  2011年   1411篇
  2010年   1000篇
  2009年   1081篇
  2008年   1101篇
  2007年   1124篇
  2006年   962篇
  2005年   851篇
  2004年   723篇
  2003年   636篇
  2002年   524篇
  2001年   338篇
  2000年   316篇
  1999年   315篇
  1998年   279篇
  1997年   235篇
  1996年   234篇
  1995年   205篇
  1994年   198篇
  1993年   198篇
  1992年   169篇
  1991年   160篇
  1990年   133篇
  1989年   114篇
  1988年   99篇
  1987年   92篇
  1986年   92篇
  1985年   189篇
  1984年   361篇
  1983年   297篇
  1982年   283篇
  1981年   215篇
  1980年   189篇
  1979年   163篇
  1978年   133篇
  1977年   134篇
  1976年   122篇
  1975年   101篇
  1973年   105篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
The original strategies developed by Helicobacter pylori to persistently colonise its host and to deregulate its cellular functions make this bacterium an outstanding model to study host‐pathogen interaction and the mechanisms responsible for bacterial‐induced carcinogenesis. During the last year, significant results were obtained on the role of bacterial factors essential for gastric colonisation such as spiral shape maintenance, orientation through chemotaxis and the formation of bacteria clonal population islands inside the gastric glands. Particularities of the H pylori cell surface, a structure important for immune escape, were demonstrated. New insights in the bacterial stress response revealed the importance of DNA methylation‐mediated regulation. Further findings were reported on H pylori components that mediate natural transformation and mechanisms of bacterial DNA horizontal transfer which maintain a high level of H pylori genetic variability. Within‐host evolution was found to be niche‐specific and probably associated with physiological differences between the antral and oxyntic gastric mucosa. In addition, with the progress of CryoEM, high‐resolution structures of the major virulence factors, VacA and CagT4SS, were obtained. The use of gastric organoid models fostered research revealing, preferential accumulation of bacteria at the site of injury during infection. Several studies further characterised the role of CagA in the oncogenic properties of H pylori, identifying the activation of novel CagA‐dependent pathways, leading to the promotion of genetic instabilities, epithelial‐to‐mesenchymal transition and finally carcinogenesis. Recent studies also highlight that microRNA‐mediated regulation and epigenetic modifications, through DNA methylation, are key events in the H pylori‐induced tumorigenesis process.  相似文献   
993.
994.
995.
996.
This study was designed to investigate the protective effect of CD4+CD25+ regulatory T cells (Tregs) against zona pellucida glycoprotein 3 peptide (pZP3) immunization‐induced premature ovarian insufficiency (POI) in mice. A mouse POI model was induced by two subcutaneous injections of pZP3 (50 nmol/L). Mice in the pZP3‐Treg group were intraperitoneally injected with 5 × 105 CD4+CD25+ Tregs after the POI model was established. Sex hormone levels, follicle numbers, apoptotic events, and the Akt/FOXO3a signaling pathway molecules in the ovaries were assessed. Compared with control group, the weight of ovaries in both pZP3 group and pZP3‐Treg group was decreased and no difference was found between them. The number of follicles in the Treg transferred mice, like in pZP3 group, was significantly reduced compared to the control group, but showed a modest improvement when compared the pZP3 group alone. Significantly lower serum concentrations of follicle‐stimulating hormone, luteinizing hormone, and anti‐zona pellucida antibodies (AZPAbs) were found, while the concentrations of estradiol and anti‐Mullerian hormone increased. In mechanism, Treg cell transfer to ZP3 treated mice restored the levels of Caspase3 to control levels, and partially restored Bax, however, had no effect on Bcl‐2. Moreover, Treg cell transfer to ZP3 treated mice partially restored the levels of Akt and FOXO3a, and partially restored the ratios of p‐Akt/Akt and p‐FOXO3a/FOXO3a. In conclusion, Treg cells improved some aspects of ZP3‐induced POI which may be mediate by suppressing ovarian cells apoptosis and involving the Akt/FOXO3a signaling pathway. Therefore, Treg cells may be protective against autoimmune POI.  相似文献   
997.
998.
In most dicotyledonous plants, leaf pavement cells exhibit complex jigsaw puzzle-like cell morphogenesis during leaf expansion. Although detailed molecular biological information and mathematical modeling of this jigsaw puzzle-like cell morphogenesis are now available, a full understanding of this process remains elusive. Recent reports have highlighted the importance of three-dimensional (3D) structures (i.e., anticlinal and periclinal cell wall) in understanding the mechanical models that describe this morphogenetic process. We believe that it is important to acquire 3D shapes of pavement cells over time, i.e., acquire and analyze four-dimensional (4D) information when studying the relationship between mechanical modeling and simulations and the actual cell shape. In this report, we have developed a framework to capture and analyze 4D morphological information of Arabidopsis thaliana cotyledon pavement cells by using both direct water immersion observations and computational image analyses, including segmentation, surface modeling, virtual reality and morphometry. The 4D cell models allowed us to perform time-lapse 3D morphometrical analysis, providing detailed quantitative information about changes in cell growth rate and shape, with cellular complexity observed to increase during cell growth. The framework should enable analysis of various phenotypes (e.g., mutants) in greater detail, especially in the 3D deformation of the cotyledon surface, and evaluation of theoretical models that describe pavement cell morphogenesis using computational simulations. Additionally, our accurate and high-throughput acquisition of growing cell structures should be suitable for use in generating in silico model cell structures.  相似文献   
999.
Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010–2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon–climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号