首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24731篇
  免费   1351篇
  国内免费   816篇
  2023年   362篇
  2022年   533篇
  2021年   650篇
  2020年   669篇
  2019年   935篇
  2018年   974篇
  2017年   595篇
  2016年   590篇
  2015年   687篇
  2014年   1427篇
  2013年   2048篇
  2012年   1052篇
  2011年   1411篇
  2010年   1010篇
  2009年   1083篇
  2008年   1104篇
  2007年   1128篇
  2006年   967篇
  2005年   860篇
  2004年   737篇
  2003年   642篇
  2002年   528篇
  2001年   342篇
  2000年   319篇
  1999年   317篇
  1998年   281篇
  1997年   237篇
  1996年   234篇
  1995年   206篇
  1994年   200篇
  1993年   200篇
  1992年   170篇
  1991年   165篇
  1990年   135篇
  1989年   114篇
  1988年   99篇
  1986年   92篇
  1985年   244篇
  1984年   490篇
  1983年   407篇
  1982年   439篇
  1981年   321篇
  1980年   327篇
  1979年   286篇
  1978年   226篇
  1977年   207篇
  1976年   205篇
  1975年   168篇
  1974年   140篇
  1973年   168篇
排序方式: 共有10000条查询结果,搜索用时 375 毫秒
971.
When an γ‐irradiated Dy‐, Tm‐, Sm‐ or Mn‐doped CaSO4 crystal is impulsively deformed, two peaks appear in the ML intensity versus time curve, whereby the first ML peak is found in the deformation region and the second in the post‐deformation region of the crystals. In this study, intensities Im1 and Im2 corresponding to first and second ML peaks, respectively, increased linearly with an impact velocity v0 of the piston used to deform the crystals, and times tm1 and tm2 corresponding to the first and second ML peaks, respectively, decreased with impact velocity. Total ML intensity initially increased with impact velocity and then reached a saturation value for higher values of impact velocity. ML intensity increased with increasing γ‐doses and size of crystals. Results showed that the electric field produced as a result of charging of newly‐created surfaces caused tunneling of electrons to the valence band of the hole‐trapping centres. The free holes generated moved in the valence band and their subsequent recombination with electron trapping centres released energy, thereby resulting in excitation of luminescent centres. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
972.
A simple, accurate, precise and validated spectrofluorimetric method is proposed for the determination of two cephalosporins, namely, cefadroxile (cefa) and cefuroxime sodium (cefu) in pharmaceutical formulations. The method is based on a reaction between cephalosporins with 1,2‐naphthoquinone‐4‐sulfonate in alkaline medium, to form fluorescent derivatives that are extracted with chloroform and subsequently measured at 610 and 605 nm after excitation at 470 and 460 nm for cefa and cefu respectively. The optimum experimental conditions have been studied. Beer's law is obeyed over the concentrations of 20–70 ng/mL and 15–40 ng/mL for cefa and cefu, respectively. The detection limits were 4.46 ng/mL and 3.02 ng/mL with a linear regression correlation coefficient of 0.9984 and 0.998, and recoveries ranging 97.50–109.96% and 95.73–98.89% for cefa and cefu, respectively. The effects of pH, temperature, reaction time, 1,2‐naphthoquinone‐4‐sulfonic concentration and extraction solvent on the determination of cefa and cefu, have been examined. The proposed method can be applied for the determination of cefa and cefu in pharmaceutical formulations in quality control laboratories. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
973.
Abstract

3′-C-Trifluoromethyl-β-D-ribonucleoside derivatives bearing the five naturally occurring nucleic acid bases have been synthesized. All these derivatives were prepared by glycosylation reactions of purine and pyrimidine bases with a suitable peracylated 3-C-trifluoromethyl ribofuranose precursor. After deprotection, the resulting title nucleoside analogues were tested for their inhibitory properties against the replication of HIV, HBV and several RNA viruses. However, none of these compounds showed significant antiviral activity.  相似文献   
974.
The universal solid support, USIII, representing a new and improved version of commercial USII, as well as 2 ′-deoxynucleoside and 2 ′-deoxy-2 ′-fluoronucleoside bound supports, incorporating a labile phenoxyacetyl fragment, was synthesized by an aminomethyl polystyrene carbamoylation with corresponding azides in the presence of aqueous triethylammonium bicarbonate. All three solid phases incorporate a stable urea tether, thus bridging the polymer and functional linker. These new matrices proved to be potent solid phases for the synthesis of DNA, RNA, or modified oligonucleotides as well as randomized mixed 2 ′-ribo/2 ′-deoxy-2 ′-fluoro-RNA libraries and/or DNA libraries, randomized with trinucleotides (codons).  相似文献   
975.
The Mitsunobu reaction was applied to prepare, in one step, purine N 3,5′‐cyclonucleosides 10a–d. A subsequent ring opening in the ribose moiety of the resultant N 3,5′‐nucleosides by sodium periodate led to the corresponding N 3,5′‐cyclo‐2′,3′‐seconucleosides. These products consist of 5‐, 6‐, and 7‐membered tricyclic system which is the basic skeleton of TIBO derivatives, known antiviral agents.  相似文献   
976.
Four D‐altritol nucleosides with a 3′‐O‐tert‐butyldimethylsilyl protecting group are synthesized (base moieties are adenine, guanine, thymine and 5‐methylcytosine). The nucleosides are obtained by ring opening reaction of 1,5:2,3‐dianhydro‐4,6‐O‐benzylidene‐D‐allitol. Optimal reaction circumstances (NaH, LiH, DBU, phase transfer, microwave irridation) for the introduction of the heterocycles are base‐specific. For the introduction of the 3′‐O‐silyl protecting group, long reaction times and several equivalents of tert‐butyldimethylsilyl chloride are needed.  相似文献   
977.
Tert-butyldiphenylsilyl (TBDPS) was testified to be an appropriate orthogonal protecting group for novel 7-hydroxyl-functionalized 8-aza-7-deaza-2′-deoxyadenosine analogues. It was stable in partial and complete hydrogenation reactions used for the different linker preparation. The corresponding phosphoramidites and hydroxyl-functionalized oligodeoxynucleotides were synthesized and identified. The thermal effect of the hydroxyl group with different linkers on DNA duplexes was evaluated. It provided a feasible strategy for the preparation of hydroxyl-functionalized DNAs for the nucleic acid research.  相似文献   
978.
ABSTRACT

Lead tetraacetate (LTA) oxidation of α-Phenyl-N-(4-biphenyl)nitrone (8) to give a new ultimate carcinogen, N-acetoxy-N-benzoyl-4-aminobiphenyl (9) which was reacted with deoxyguanosine (dG) at pH 6.9 to give nucleoside derivative, N-(benzoyl)-N-(deoxyguanosin-8-yl)-4-aminobiphenyl (10). Following debenzoylation with sodium carbonate-methanol leads to N-(2′-deoxyguanosin-8-yl)-4-aminobiphenyl (11).  相似文献   
979.
IMP preferring cytosolic 5 ′-nucleotidase II (cN-II) is a widespread enzyme whose amino acid sequence is highly conserved among vertebrates. Fluctuations of its activity have been reported in some pathological conditions and its mRNA levels have been proposed as a prognostic factor for poor outcome in patients with adult acute myeloid leukemia. As a member of the oxypurine cycle, cN-II is involved in the regulation of intracellular concentration of 5′-inosine monophosphate (IMP), 5′-guanosine monophosphate (GMP), and also 5-phosphoribose 1-pyrophosphate (PRPP) and is therefore involved in the regulation of purine and pyrimidine de novo and salvage synthesis. In addition, several studies demonstrated the involvement of cN-II in pro-drug metabolism. Notwithstanding some publications indicating that cN-II is essential for the survival of several cell types, its role in cell metabolism remains uncertain. To address this issue, we built two eucaryotic cellular models characterized by different cN-II expression levels: a constitutive cN-II knockdown in the astrocytoma cell line (ADF) by short hairpin RNA (shRNA) strategy and a cN-II expression in the diploid strain RS112 of Saccharomyces cerevisiae. Preliminary results suggest that cN-II is essential for cell viability, probably because it is directly involved in the regulation of nucleotide pools. These two experimental approaches could be very useful for the design of a personalized chemotherapy.  相似文献   
980.
Abstract

3′,5′-Di-O-benzoyl-2′-O-(tetrahydropyran-2-yl)uridine and 3′,5′ -di-O-benzoyl-N 2-isobutyryl-2′-O-(tetrahydropyran-2-yl)guanosine are converted into-N 3-anisoyl-2′-O-(tetrahydropyran-2-yl)uridine (less and more polar diastereoisomers in 37% and 42% yields, respectively) and O 6-diphenyl carbamoylN 2-isobutyryl-2′-O-(tetrahydropyran-2-yl)- guanosine (less and more polar diastereoisomers in 15% and 59% yields, respectively), respectively, by N 3-anisoylation and O 6-diphenylcarbamoylation, followed by 3′,5′-di-O-debenzoylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号