首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52229篇
  免费   4154篇
  国内免费   1607篇
  2023年   726篇
  2022年   1071篇
  2021年   1320篇
  2020年   1695篇
  2019年   2218篇
  2018年   2016篇
  2017年   1428篇
  2016年   1412篇
  2015年   1586篇
  2014年   3053篇
  2013年   3697篇
  2012年   2277篇
  2011年   3003篇
  2010年   2237篇
  2009年   2553篇
  2008年   2759篇
  2007年   2707篇
  2006年   2257篇
  2005年   2083篇
  2004年   1880篇
  2003年   1598篇
  2002年   1378篇
  2001年   949篇
  2000年   761篇
  1999年   812篇
  1998年   760篇
  1997年   679篇
  1996年   619篇
  1995年   662篇
  1994年   629篇
  1993年   516篇
  1992年   474篇
  1991年   420篇
  1990年   335篇
  1989年   315篇
  1988年   280篇
  1987年   281篇
  1986年   244篇
  1985年   398篇
  1984年   536篇
  1983年   435篇
  1982年   456篇
  1981年   382篇
  1980年   399篇
  1979年   298篇
  1978年   235篇
  1977年   225篇
  1976年   224篇
  1975年   188篇
  1973年   166篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
82.
Morphological studies were carried out with peach flower buds collected monthly in 1989 and 1990, from two months before leaf fall (7 March) until two to three weeks before bloom (7/8 August). Chilled (2–4°C for 30 days) and unchilled buds were exposed to 20 to 25°C, 100% RH and continuous light. Gibberellin A3 (3 ng or 30 ng) was applied to some of the non-chilled cuttings at three days intervals. Then, 12, 19, and 26 days after they were planted, the buds were sampled and processed for histological studies. Cultured flower buds (chilled or unchilled) had accelerated anther and gynoecium morphogenesis after 12 days under controlled conditions, compared to buds processed immediately after collection from the field. Chilling treatment augmented the bud culture effect, while Gibberellin A3 applications to the excised buds retarded bud morphogenesis to a stage comparable to that of buds collected directly from the field. This, suggests that the comparatively high levels of Gibberellin A1/3 we previously found in mid winter [15, 18] could be at least one of the factors that controls floral bud dormancy by retarding anther and gynoecium development.  相似文献   
83.
84.
Heterotrimeric G protein is involved in plant growth and development, while the role of rice (Oryza sativa) G protein γ subunit qPE9-1 in response to low-phosphorus (LP) conditions remains unclear. The gene expression of qPE9-1 was significantly induced in rice roots under LP conditions. Rice varieties carrying the qPE9-1 allele showed a stronger primary root response to LP than the varieties carrying the qpe9-1 allele (mutant of the qPE9-1 allele). Transgenic rice plants with the qPE9-1 allele had longer primary roots and higher P concentrations than those with the qpe9-1 allele under LP conditions. The plasma membrane (PM) H+-ATPase was important for the qPE9-1-mediated response to LP. Furthermore, OsGF14b, a 14-3-3 protein that acts as a key component in activating PM H+-ATPase for root elongation, is also involved in the qPE9-1 mediation. Moreover, the overexpression of OsGF14b in WYJ8 (carrying the qpe9-1 allele) partially increased primary root length under LP conditions. Experiments using R18 peptide (a 14-3-3 protein inhibitor) showed that qPE9-1 is important for primary root elongation and H+ efflux under LP conditions by involving the 14-3-3 protein. In addition, rhizosheath weight, total P content, and the rhizosheath soil Olsen-P concentration of qPE9-1 lines were higher than those of qpe9-1 lines under soil drying and LP conditions. These results suggest that the G protein γ subunit qPE9-1 in rice plants modulates root elongation for phosphorus uptake by involving the 14-3-3 protein OsGF14b and PM H+-ATPase, which is required for rice P use.  相似文献   
85.
Small ubiquitin-like modifier (SUMO), a member of the ubiquitin-related protein family, is covalently conjugated to lysine residues of its substrates in a process referred to as SUMOylation. SUMOylation occurs through a series of enzymatic reactions analogous to that of the ubiquitination pathway, resulting in modification of the biochemical and functional properties of substrates. To date, four mammalian SUMO isoforms, a single heterodimeric SUMO-activating E1 enzyme SAE1/SAE2, a single SUMO-conjugating E2 enzyme ubiquitin-conjugating enzyme E2I (UBC9), and a few subgroups of SUMO E3 ligases have been identified. Several SUMO E3 ligases such as topoisomerase I binding, arginine/serine-rich (TOPORS), TNF receptor-associated factor 7 (TRAF7), and tripartite motif containing 27 (TRIM27) have dual functions as ubiquitin E3 ligases. Here, we demonstrate that the ubiquitin E3 ligase UHRF2 also acts as a SUMO E3 ligase. UHRF2 effectively enhances zinc finger protein 131 (ZNF131) SUMOylation but does not enhance ZNF131 ubiquitination. In addition, the SUMO E3 activity of UHRF2 on ZNF131 depends on the presence of SET and RING finger-associated and nuclear localization signal-containing region domains, whereas the critical ubiquitin E3 activity RING domain is dispensable. Our findings suggest that UHRF2 has independent functional domains and regulatory mechanisms for these two distinct enzymatic activities.  相似文献   
86.
Many studies have verified that microRNAs contribute a lot to neuropathic pain progression. Furthermore, nerve-related inflammatory cytokines play vital roles in neuropathic pain progression. miR-183 has been identified to have a common relationship with multiple pathological diseases. However, the potential effects of miR-183 in the process of neuropathic pain remain undetermined. Therefore, we performed the current study with the purpose of finding the functions of miR-183 in neuropathic pain progression using a chronic sciatic nerve injury (CCI) rat model. We demonstrated that miR-183 expression levels were evidently reduced in CCI rats in contrast with the control group. Overexpression of miR-183 produced significant relief of mechanical hyperalgesia, as well as thermal hyperalgesia in CCI rats. Furthermore, neuropathic pain-correlated inflammatory cytokine expression levels containing interleukin-6 (IL-6) and interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2) were obviously inhibited by upregulation of miR-183. Meanwhile, dual-luciferase reporter assays showed MAP3K4 was a direct downstream gene of miR-183. The expression levels of MAP3K4 were modulated by the increased miR-183 negatively, which lead to the downregulation of IL-6, IL-1β, and COX-2, and then reduced neuropathic pain progression, respectively. Overall, our study pointed out that miR-183 was a part of the negative regulator which could relieve neuropathic pain by targeting MAP3K4. Thus it may provide a new clinical treatment for neuropathic pain patients clinical therapy.  相似文献   
87.
Nitrosation activity was measured in Escherichia coli isolates and a range of nitrite reductase (nir) mutants. Activity was only detected in intact cells and could be inhibited by a number of treatments such as sonication and osmotic shock. Aerobically-grown cells had highest nitrosation activity compared to oxygen-limited ones. Inclusion of nitrite in growth media induced high activities of nitrite reductase and for some isolates, nitrosation. Analysis of nir mutants identified two which were unable to nitrosate. This result suggested that NADH-dependent nitrite reductase was implicated either directly or indirectly in nitrosation.  相似文献   
88.
Nitric oxide (NO) is a chemical weapon within the arsenal of immune cells, but is also generated endogenously by different bacteria. Pseudomonas aeruginosa are pathogens that contain an NO-generating nitrite (NO2) reductase (NirS), and NO has been shown to influence their virulence. Interestingly, P. aeruginosa also contain NO dioxygenase (Fhp) and nitrate (NO3) reductases, which together with NirS provide the potential for NO to be metabolically cycled (NO→NO3→NO2→NO). Deeper understanding of NO metabolism in P. aeruginosa will increase knowledge of its pathogenesis, and computational models have proven to be useful tools for the quantitative dissection of NO biochemical networks. Here we developed such a model for P. aeruginosa and confirmed its predictive accuracy with measurements of NO, O2, NO2, and NO3 in mutant cultures devoid of Fhp or NorCB (NO reductase) activity. Using the model, we assessed whether NO was metabolically cycled in aerobic P. aeruginosa cultures. Calculated fluxes indicated a bottleneck at NO3, which was relieved upon O2 depletion. As cell growth depleted dissolved O2 levels, NO3 was converted to NO2 at near-stoichiometric levels, whereas NO2 consumption did not coincide with NO or NO3 accumulation. Assimilatory NO2 reductase (NirBD) or NorCB activity could have prevented NO cycling, and experiments with ΔnirB, ΔnirS, and ΔnorC showed that NorCB was responsible for loss of flux from the cycle. Collectively, this work provides a computational tool to analyze NO metabolism in P. aeruginosa, and establishes that P. aeruginosa use NorCB to prevent metabolic cycling of NO.  相似文献   
89.
The development of a sensitive and specific enzyme immunoassay for GA3 is reported. This method was based on the use of peroxidase labelled GA3 and immobilized antibodies. In order to obtain a rapid immunoassay, several steps of purification were analyzed to show their necessity. Barley seed extracts were assayed at different steps of purification to exhibit the effect of extract components on the assay. It was demonstrated that HPLC had to be performed when a selective quantitation of GA3 was required. This assay allowed GA3 to be measured with reproducibility as its unmethylated form and the quantitation of GA3 in barley seeds with this enzyme immunoassay was correlated to a GC-MS method.Abbreviations GA3 gibberellin A3 - EIA enzyme immunoassay - DMF dimethylformamide - TEA tri(n)ethylamine - BSA bovine serum albumin - OVA ovalbumine - ECF ethylchloroformate - PB phosphate buffer  相似文献   
90.
The pannexin family of channel-forming proteins is composed of 3 distinct but related members called Panx1, Panx2, and Panx3. Pannexins have been implicated in many physiological processes as well as pathological conditions, primarily through their function as ATP release channels. However, it is currently unclear if all pannexins are subject to similar or different post-translational modifications as most studies have focused primarily on Panx1. Using in vitro biochemical assays performed on ectopically expressed pannexins in HEK-293T cells, we confirmed that all 3 pannexins are N-glycosylated to different degrees, but they are not modified by sialylation or O-linked glycosylation in a manner that changes their apparent molecular weight. Using cell-free caspase assays, we also discovered that similar to Panx1, the C-terminus of Panx2 is a substrate for caspase cleavage. Panx3, on the other hand, is not subject to caspase digestion but an in vitro biotin switch assay revealed that it was S-nitrosylated by nitric oxide donors. Taken together, our findings uncover novel and diverse pannexin post-translational modifications suggesting that they may be differentially regulated for distinct or overlapping cellular and physiological functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号