首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84838篇
  免费   6124篇
  国内免费   4576篇
  2024年   171篇
  2023年   1249篇
  2022年   1953篇
  2021年   2677篇
  2020年   2530篇
  2019年   2873篇
  2018年   2829篇
  2017年   2137篇
  2016年   2145篇
  2015年   2663篇
  2014年   4949篇
  2013年   6218篇
  2012年   3827篇
  2011年   5064篇
  2010年   3882篇
  2009年   4352篇
  2008年   4519篇
  2007年   4578篇
  2006年   4036篇
  2005年   3644篇
  2004年   3245篇
  2003年   2823篇
  2002年   2491篇
  2001年   1718篇
  2000年   1495篇
  1999年   1553篇
  1998年   1449篇
  1997年   1255篇
  1996年   1168篇
  1995年   1096篇
  1994年   1024篇
  1993年   931篇
  1992年   790篇
  1991年   726篇
  1990年   589篇
  1989年   558篇
  1988年   479篇
  1987年   456篇
  1986年   392篇
  1985年   546篇
  1984年   768篇
  1983年   561篇
  1982年   619篇
  1981年   466篇
  1980年   435篇
  1979年   375篇
  1978年   281篇
  1977年   205篇
  1976年   186篇
  1975年   159篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
Abstract Increasing atmospheric CO2 may result in alleviation of salinity stress in salt-sensitive plants. In order to assess the effect of enriched CO2 on salinity stress in Andropogon glomeratus, a C4 non-halophyte found in the higher regions of salt marshes, plants were grown at 350, 500, and 650 cm3 m?3 CO2 with 0 or 100 mol m?3 NaCl watering treatments. Increases in leaf area and biomass with increasing CO2 were measured in salt-stressed plants, while decreases in these same parameters were measured in non-salt-stressed plants. Tillering increased substantially with increasing CO2 in salt-stressed plants, resulting in the increased biomass. Six weeks following initiation of treatments, there was no difference in photosynthesis on a leaf area basis with increasing CO2 in salt-stressed plants, although short-term increases probably occurred. Stomatal conductance decreased with increasing CO2 in salt-stressed plants, resulting in higher water-use efficiency, and may have improved the diurnal water status of the plants. Concentrations of Na+ and Cl? were higher in salt stressed-plants while the converse was found for K +. There were no differences in leaf ion content between CO2 treatments in the salt-stressed plants. Decreases in photosynthesis in salt-stressed plants occurred primarily as a result of decreased internal (non-stomatal) conductance.  相似文献   
172.
Abstract Crassulacean acid metabolism (CAM) was studied in mixotrophic callus tissue cultures of Kalanchoë blossfeldiana hybr. Montezuma and compared with plants propagated from the calli. The ultrastructural properties of the green callus cells are similar to mesophyll cells of CAM plants except that occasionally abnormal mitochondria were observed. There was permanent net CO2 output by the calli in light and darkness, which was lower in darkness than in light. The calli exhibited a diurnal rhythm of malic acid, with accumulation during the night and depletion during the day. 14C previously incorporated by dark CO2 fixation into malate was transferred upon subsequent illumination into end products of photosynthesis. All these data indicate that CAM operates in the calli tissue. The results revealed that the capacity for CAM is obviously lower in the calli compared with plantlets developing from the calli, or with ‘adult’ plants. The data suggest also that CAM in the calli was not limited by the activities of CAM enzymes.  相似文献   
173.
A novel approach was used to assess the role of phosphoinositide hydrolysis in the mitogenic action of phytohemagglutinin (PHA) or concanavalin A (ConA). The treatment of human peripheral blood leukocytes (PBL) with monospecific antibodies against phospholipase C (PLC) produced a dose-dependent inhibition (up to 100%) of PHA (10 g/ml) or ConA (25 g/ml) proliferative effects. Thus, the activation of membrane-bound PLC is asine-qua-non condition for lectin-induced proliferation of T lymphocytes. The key-role of PLC versus protein kinase C (PKC) is stressed by the fact that the inhibition of PKC with Hidaka's compound H-7 (40 M) produced only a partial blockade (about 25%) of lectin mitogenic effect.To whom correspondence should be addressed.  相似文献   
174.
Diphtheria toxin fragment A interacts with Cibacron blue in solution, although it is not retained by blue Sepharose columns. Difference spectral titration of fragment A with the dye gives a dissociation constant of the order of 10–5 M and a 11 stoichiometry for the complex. In equilibrium dialysis experiments Cibacron blue behaves as a competitive inhibitor of the binding of NAD to diphtheria toxin fragment A. The dye inhibits in a non-competitive way the fragment A-catalysed transfer of ADP-ribose from NAD to elongation factor 2 (EF2). By affinity chromatography on blue Sepharose a binding of EF2 and of ADP-ribosyl-EF2 with the dye is also demonstrated. GDP, GTP and GDP(CH2)P are able to displace EF2 from blue Sepharose.  相似文献   
175.
The rapid increase in protein synthesis that occurs on addition of insulin (1 mU/ml) to stepped-down 3T3 cells was blocked by pre-incubation of the cells with pertussis toxin. Cholera toxin on the other hand stimulated protein synthesis and this effect was insensitive to actinomycin D and inhibited by pro-treatment of the cells with phorbol dibutyrate to deplete cell protein kinase C. Insulin was found to cause a rapid and transient increase in diacylglycerol (DAG) synthesis. The insulin-induced increase in diacylglycerol was blocked by pertussis toxin. Exogenous DAG (10 M) stimulated protein synthesis within 1 hour. The results suggest that insuIin stimulates ribosomal activity through a signal mechanism that involves a G-protein mediated activation of phospholipase C to increase DAG levels.  相似文献   
176.
The rate constant of modification of a specific thiol group, SH2, with N-ethylmaleimide (NEM) has been used to estimate the conformational change in the local area containing SH2 (SH2 region) of skeletal myosin as a structural probe. The rate of Mg2+-ATP-induced SH2 modification of subfragment-1 (S-l) isozymes was regulated by Ca2+ in the pCa range below 6.4 and was not regulated in the pCa range above 6.4. No substantial difference between S-1 containing alkali light chain, A1, (S-1(A1)) and S-1 containing alkali light chain, A2, (S-1(A2)) was observed in the Ca2+-dependent rate of SH2 modification. Due to the presence of this Ca2+ regulation in myosin (absence in S-1 isozymes) in the pCa range above 6.4, absence of 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) light chain in S-1 isozymes, and high affinity of Ca2+ for DTNB light chain, this Ca2+ regulation in the pCa range above 6.4 is possibly related to the Ca2+ binding to DTNB light chain. F-Actin, which is entirely free from tropomyosin and troponin, enhanced the rate of Mg2+-ATP-induced SH2 modification of S-1 isozymes equally and of myosin, and reduced the Ca2+ sensitivity with an increase in F-actin concentration.  相似文献   
177.
Abstract Internodal cells of Lamprothamnium succinctum, a brackish water Characeae, regulate turgor pressure in response to changes in external osmotic pressure (turgor regulation). When internodal cells were transferred to a hypotonic medium containing 3.9 mol m?3 Ca2+, the cell osmotic pressure decreased and the original turgor pressure was recovered. During turgor regulation Ca content of the cytoplasm increased significantly. Lowering the external Ca2+ concentration from 3.9 to 0.01 mol m?3 inhibited this increase in cytoplasmic calcium content. In a hypotonic medium containing 0.01 mol m?3 Ca2+, turgor regulation was inhibited as previously reported (Okazaki & Tazawa, 1986a). Thus transient increase in cytoplasmic Ca, probably in the ionized form, induced by hypotonic treatment may play an important role in turgor regulation.  相似文献   
178.
The protolytic reactions of PSII membrane fragments were analyzed by measurements of absorption changes of the water soluble indicator dye bromocresol purple induced by a train of 10 s flashes in dark-adapted samples. It was found that: a) in the first flash a rapid H+-release takes place followed by a slower H+-uptake. The deprotonation is insensitive to DCMU but is completely eliminated by linolenic acid treatment of the samples; b) the extent of the H+-uptake in the first flash depends on the redox potential of the suspension. In this time domain no H+-uptake is observed in the subsequent flashes; c) the extent of the H+-release as a function of the flash number in the sequence exhibits a characteristic oscillation pattern. Multiphasic release kinetics are observed. The oscillation pattern can be satisfactorily described by a 1, 0, 1, 2 stoichiometry for the redox transitions Si Si+1 (i=0, 1, 2, 3) in the water oxidizing enzyme system Y. The H+-uptake after the first flash is assumed to be a consequence of the very fast reduction of oxidized Q400(Fe3+) formed due to dark incubation with K3[Fe(CN)6]. The possible participation of component Z in the deprotonation reactions at the PSII donor side is discussed.Abbreviations A protonizable group at the PSII acceptor side - BCP Bromocresol Purple - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FWHM Full Width at Half Maximum - QA, QB primary and secondary plastoquinone at PSII acceptor side - Q400 redox group at PSII-acceptor side (high spin Fe2+) - P680 Photoactive chlorophyll of PSII reaction center - Si redox states of the catalytic site of water oxidation - Z redox component connecting the catalytic site of water oxidation with the reaction center  相似文献   
179.
CO2 fixation was studied in a lichen, Xanthoria parietina, kept in continuous light, and with cyclic changes in light intensity, dark period or temperature. The diurnal and seasonal courses of CO2 exchange were followed. The rate of net photosynthesis was observed to fall from morning to evening, and this decline was more pronounced in winter than in summer. The maximal net photosynthetic rate, 223 ng CO2g-1dws-1, occured in winter and the minimum, 94 ng CO2g-1dws-1, late in spring. The light compensation point in summer was four times as high as in winter. In continuous light (180 or 90 mol photons m-2s-1, 15°C) net photosynthesis decreased noticeably during one week, falling below the level maintained in a 12 h light: 12 h dark cycle. Photosynthetic activity did not decrease, however, in lichens held in continuous light (90 mol photons m-2s-1) with cyclic changes of temperature (12 h 20 °C: 12 h 5 °C). Active photosynthesis was also maintained in light of cyclically changing intensity (12 h: 12 h, 15 °C) when night-time light was at least 75% lower than illumination by day. A dark period of 4 hours in a 24-h light:dark cycle was sufficient to keep CO2 fixation at the control level. It seems that plants need an unproductive period during the day to survive and this can be induced by fluctuations in light and/or temperature.  相似文献   
180.
The distribution of carbon-11-labeled L-deprenyl, an irreversible inhibitor of monoamine oxidase type B (MAO-B), was determined in the baboon brain by positron emission tomography. The irreversible blood-to-brain transfer constant (influx constant, Ki) was measured using a complete metabolite-corrected arterial plasma concentration curve. This influx constant was used as a measure of functional enzyme activity for sequential determinations of MAO-B recovery following a single high dose of unlabeled l -deprenyl. The half-life for turnover of MAO-B was thus determined to be 30 days. Using appropriate irreversible inhibitors, this procedure should be generally useful for determining enzyme turnover rates in any organ in vivo and can be applied to some human studies as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号