首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3433篇
  免费   211篇
  国内免费   114篇
  2024年   9篇
  2023年   68篇
  2022年   85篇
  2021年   88篇
  2020年   87篇
  2019年   106篇
  2018年   98篇
  2017年   78篇
  2016年   75篇
  2015年   94篇
  2014年   158篇
  2013年   188篇
  2012年   134篇
  2011年   187篇
  2010年   144篇
  2009年   174篇
  2008年   164篇
  2007年   237篇
  2006年   182篇
  2005年   141篇
  2004年   128篇
  2003年   128篇
  2002年   104篇
  2001年   78篇
  2000年   64篇
  1999年   59篇
  1998年   54篇
  1997年   45篇
  1996年   55篇
  1995年   36篇
  1994年   38篇
  1993年   32篇
  1992年   25篇
  1991年   29篇
  1990年   29篇
  1989年   16篇
  1988年   17篇
  1987年   27篇
  1986年   12篇
  1985年   36篇
  1984年   45篇
  1983年   37篇
  1982年   35篇
  1981年   19篇
  1980年   25篇
  1979年   16篇
  1978年   17篇
  1977年   15篇
  1975年   9篇
  1973年   8篇
排序方式: 共有3758条查询结果,搜索用时 31 毫秒
51.
The molecular genetics of Alzheimer's disease   总被引:1,自引:0,他引:1  
The major pathological characteristic of Alzheimer's disease (AD) is the abnormal deposition of β-amyloid peptide (Aβ) in the brain. In some early onset cases, the disease develops because of mutations in the gene coding for β-amyloid precursor protein (βAPP). However, the majority of AD families in the early onset subgroup are linked to a locus on chromosome 14. The genetic analysis and age of onset correlates of both the βAPP gene and the chromosome 14 locus are discussed. We speculate on the mechanisms by which the βAPP mutations cause the disease and discuss recent advances in βAPP processing that may be relevant to the pathogenesis of the late-onset (common) form of the disease. In addition, we review the association of theAPOE locus with late-onset familial and nonfamilial disease. Further work is required to establish the effects of this locus on disease occurrence, age of onset, and progression. The molecular pathology of ApoE in relation to AD development and the identification of the chromosome 14 gene will greatly contribute to a general pathogenic model of AD, and will clarify the role of βAPP and its derivatives.  相似文献   
52.
Recombinant Chinese Hamster Ovary (CHO) cells, engineered for the production of human gamma-glutamyl transferase (GGT), have been grown on Cytodex 1 microcarriers, as aggregates, or as single cells in suspension after adaptation. GGT is a membrane bound enzyme which was not secreted during the culture period. The maximal enzyme activity was found to be directly related to the achieved maximal cell density. Culture of CHO on microcarriers yielded the fastest growth, with a specific growth rate of 0.04 h–1, the highest cell density (near 1.3×106 cells ml–1), and the highest enzyme activity around 300 mU ml–1, which corresponded to a specific cellular level of 20 mU 10–5 cells. GGT could also be produced by growing CHO cells in suspension as single cells or as aggregates. Under these conditions, however, the specific CHO growth rate was significantly slower and the GGT level per cell was divided by a factor 6. Growing CHO cells without microcarriers also resulted in differences in cell metabolism, with a higher conversion yield of glutamine into ammonia, and a higher cell lysis. The catalytic kinetic constants of the enzyme were found identical for the three culture systems.  相似文献   
53.
Lee  R. B.  Ratcliffe  R. G. 《Plant and Soil》1993,155(1):45-55
The cytoplasmic and vacuolar pools of ammonium, inorganic phosphate and potassium can be studied non-invasively in plant tissues using high resolution nuclear magnetic resonance spectroscopy. The techniques that allow these pools to be discriminated in vivo are described and their application to plants is reviewed with reference to the phosphorus, nitrogen and potassium nutrition of root tissues.  相似文献   
54.
Distribution of net assimilated C in meadow fescue (Fectuca pratensi L.) was followed before and after cutting of the shoots. Plants were continuously labelled in a growth chamber with 14C-labelled CO2 in the atmosphere from seedling to cutting and with 13C-labelled CO2 in the atmosphere during regrowth after the cutting. Labelled C, both 14C and 13C, was determined at the end of the two growth periods in shoots, crowns, roots, soil and rhizosphere respiration. Distribution of net assimilated C followed almost the same pattern at the end of the two growth periods, i.e. at the end of the 14C- and the 13C-labelling periods. Shoots retained 71–73% of net assimilated C while 9% was detected in the roots and 11–14% was released from the roots, determined as labelled C in soil and as rhizosphere respiration. At the end of the 2nd growth period, after cutting and regrowth, 21% of the residual plant 14C at cutting (14C in crowns and roots) was found in the new shoot biomass. A minor part of the residual plant 14C, 12%, was lost from the plants. The decreases in 14C in crowns and roots during the regrowth period suggest that 14C in both crowns and roots was translocated to new shoot tissue. Approximately half of the total root C at the end of the regrowth period after cutting was 13C-labelled C and thus represents new root growth. Root death after cutting could not be determined in this experiment, since the decline in root 14C during the regrowth period may also be assigned to root respiration, root exudation and translocation to the shoots. ei]{gnH}{fnLambers} ei]{gnA C}{fnBorstlap}  相似文献   
55.
【目的】葡聚糖酶是饲用添加剂的重要成分,本研究旨在从湖羊消化道微生物中挖掘性质优良的GH9家族葡聚糖酶基因,用于研发新型饲用酶制剂。【方法】从湖羊瘤胃微生物cDNA中扩增IDSGLUC9-25基因,在大肠杆菌中进行异源表达,对重组蛋白进行诱导表达和纯化,研究重组蛋白的酶学性质和底物水解模式。【结果】IDSGLUC9-25基因编码527个氨基酸,包含一个CelD_N结构和一个GH9家族催化结构域;重组蛋白rIDSGLUC9-25分子量约为62.7 kDa,最适反应温度和pH分别为40℃和6.0,在30-50℃下活性较高,在pH 4.0-8.0范围内能够保持较高的稳定性,经pH 4.0-8.0缓冲液处理1 h后残余活性均大于90%;底物谱分析表明,rIDSGLUC9-25能催化大麦β-葡聚糖、苔藓地衣多糖、魔芋胶和木葡聚糖,比活性分别为(443.55±24.48)、(65.56±5.98)、(122.37±2.85)和(159.16±7.73) U/mg;利用薄层色谱法(thin layer chromatography, TLC)和高效液相色谱法(high performance liquid chromatography, HPLC)分析水解产物发现,rIDSGLUC9-25降解大麦葡聚糖主要生成纤维三糖(占总还原糖64.19%±1.19%)和纤维四糖(占总还原糖26.24%±0.12%),催化地衣多糖主要生成纤维三糖(占总还原糖78.46%±0.89%)。【结论】本研究报道了一种来自密螺旋体属细菌的内切β-1,4-葡聚糖酶IDSGLUC9-25 (EC 3.2.1.4),能高效催化多糖底物生成纤维三糖和纤维四糖,为研发饲用酶制剂和制备低聚寡糖建立基础。  相似文献   
56.
Lipopolysaccharides (LPS), isolated from four Mycoplana species, i.e. the type strains of M. bullata, M. segnis, M. ramosa and M. dimorpha, were characterized onto their chemical composition and their respective lipid A-types. Those of M. bullata and M. segnis showed on DOC-PAGE an R-type character and had lipid A's of the Lipid ADAG-type which exclusively contained 2,3-diamino-2,3-dideoxy-d-glucose as lipid A sugar. LPS's of M. ramosa and M. dimorpha showed, although only weakly expressed, ladder-like patterns on DOC-PAGE indicating some S-type LPS's and lipid A of the d-glucosamine type (Lipid AGlcN). M. bullata LPS contained mannose and glucose in major amounts and additionally l-glycero-d-mannoheptose, whereas M. segnis LPS was composed of rhamnose, mannose and glucose together with both, d-glycero-d-manno- and l-glycero-d-manno-heptoses in a molar ratio of 1:2. All LPS's contained 2-keto-3-deoxy-octonic acid (Kdo), phosphate and an unidentified acidic component X. In addition to X, M. segnis LPS contained glucuronic and galacturonic acids, whereas M. ramosa LPS contained only galacturonic acid. Acetic acid hydrolysis of the LPS resulted in splitting off lipid A moieties, very rich in 3-hydroxy fatty acids, in particular in 3-OH-12:0 (in Lipid ADAG), or in 3-OH-14:0 (in Lipid AGlcN). Analysis of the 3-acyloxyacyl residues revealed major amounts of amide-linked 3-OH(3-OH-13:0)12:0 in lipid A of M. bullata and 3-OH(12:0)12:0 in lipid A of M. segnis. The rare 4-oxo-myristic acid (4-oxo-14:0) was observed only in M. bullata LPS, where it is ester-linked. Amide linked diesters could not be traced in M. ramosa and M. dimorpha. All four lipid A's lacked erster-bound acyloxyacyl residues.Non-standard abbreviations DAG 2,3-diamino-2,3-dideoxy-d-glucose - Kdo 2-keto-3-deoxy-octonate - LPS lipopolysaccharide - PITC phenyl isothiocyanate - NANA N-acetyl neuraminic acid  相似文献   
57.
Radiocarbon (14C) has been used to date carbon-rich objects in Earth science, archeology, and history since the 1940s. New methods, using spikes in 14C caused by solar proton events, can be used to annually date wood when crossdating is not possible, such as when sample size is low, samples are floating in time, or external disturbances lead to insecure dates. Here, we use a spike in radiocarbon during a solar energetic particle (SEP) event in 774/775 CE to confirm crossdating of a poorly-replicated King Billy pine (Athrotaxis selaginoides) chronology. Low sample depth between 1498 and 1523 CE (two trees) prevented confident dating of the early period of the chronology. Three core samples with strong correlation with the master chronology that likely included the 774/775 CE Miyake SEP event were identified for radiocarbon isotope analysis. We sectioned segments centered on the estimated 774/775 CE date and then isolated the holocellulose in each sample. Samples were sent to an accelerator mass spectrometry (AMS) for radiocarbon measurements. The AMS data confirmed the crossdating accuracy of the tree ring series and reinforces the applicability of this technique to anchor poorly dated tree ring series in time. In addition, we found sample processing with a microtome proved superior for holocellulose extractions and yielded more accurate 14C measurements. We recommend sampling with a microtome, processing at least three samples per year, and including sample masses greater than 100 ug C to confirm dating using radiocarbon spikes.  相似文献   
58.
Enhanced exercise capacity is not only a feature of healthful aging, but also a therapy for aging patients and patients with cardiovascular disease. Disruption of the Regulator of G Protein Signaling 14 (RGS14) in mice extends healthful lifespan, mediated by increased brown adipose tissue (BAT). Accordingly, we determined whether RGS14 knockout (KO) mice exhibit enhanced exercise capacity and the role of BAT in mediating exercise capacity. Exercise was performed on a treadmill and exercise capacity was assessed by maximal running distance and work to exhaustion. Exercise capacity was measured in RGS14 KO mice and their wild types (WT), and also in WT mice with BAT transplantation from RGS14 KO mice or from other WT mice. RGS14 KO mice demonstrated 160 ± 9% increased maximal running distance and 154 ± 6% increased work to exhaustion, compared to WT mice. RGS14 KO BAT transplantation to WT mice, resulted in a reversal of phenotype, with the WT mice receiving the BAT transplant from RGS14 KO mice demonstrating 151 ± 5% increased maximal running distance and 158 ± 7% increased work to exhaustion, at three days after BAT transplantation, compared to RGS14 KO donors. BAT transplantation from WT to WT mice also resulted in increased exercise performance, but not at 3 days, but only at 8 weeks after transplantation. The BAT induced enhanced exercise capacity was mediated by (1) mitochondrial biogenesis and SIRT3; (2) antioxidant defense and the MEK/ERK pathway, and increased hindlimb perfusion. Thus, BAT mediates enhanced exercise capacity, a mechanism more powerful with RGS14 disruption.  相似文献   
59.
The presence of cyanobacteria generally decreased the effectiveness of Bacillus thuringiensis H-14 (BTI) as a mosquito larvicide. The effect was more pronounced when the mosquito larvae were exposed to BTI in the presence of several cyanobacterial strains. No synergistic or antagonistic effect between the -endotoxin from BTI and the hepatotoxin from cyanobacteria was seen. Neurotoxic cyanobacterial strains caused very fast paralysis in mosquito larvae; the decreases in the effectiveness of BTI when tested in combination with a neurotoxic strain might be due to the effect of this paralytic action on the feeding rate of the mosquito larvae.  相似文献   
60.
Nonalcoholic fatty liver disease (NAFLD) is a strong stimulant of cardiovascular diseases, affecting one-quarter of the world's population. TBC1 domain family member 25 (TBC1D25) regulates the development of myocardial hypertrophy and cerebral ischemia–reperfusion injury; however, its effect on NAFLD/nonalcoholic steatohepatitis (NASH) has not been reported. In this study, we demonstrated that TBC1D25 expression is upregulated in NASH. TBC1D25 deficiency aggravated hepatic steatosis, inflammation, and fibrosis in NASH. In vitro tests revealed that TBC1D25 overexpression restrained NASH responses. Subsequent mechanistic validation experiments demonstrated that TBC1D25 interfered with NASH progression by inhibiting abnormal lipid accumulation and inflammation. TBC1D25 deficiency significantly promoted NASH occurrence and development. Therefore, TBC1D25 may potentially be used as a clinical therapeutic target for NASH treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号