首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2196篇
  免费   179篇
  国内免费   106篇
  2024年   5篇
  2023年   28篇
  2022年   28篇
  2021年   48篇
  2020年   52篇
  2019年   77篇
  2018年   77篇
  2017年   65篇
  2016年   41篇
  2015年   50篇
  2014年   78篇
  2013年   121篇
  2012年   83篇
  2011年   93篇
  2010年   83篇
  2009年   74篇
  2008年   105篇
  2007年   97篇
  2006年   88篇
  2005年   92篇
  2004年   57篇
  2003年   65篇
  2002年   63篇
  2001年   64篇
  2000年   45篇
  1999年   49篇
  1998年   51篇
  1997年   70篇
  1996年   47篇
  1995年   47篇
  1994年   35篇
  1993年   34篇
  1992年   44篇
  1991年   34篇
  1990年   31篇
  1989年   30篇
  1988年   33篇
  1987年   28篇
  1986年   36篇
  1985年   29篇
  1984年   45篇
  1983年   26篇
  1982年   35篇
  1981年   37篇
  1980年   19篇
  1979年   5篇
  1978年   10篇
  1977年   8篇
  1976年   6篇
  1975年   5篇
排序方式: 共有2481条查询结果,搜索用时 15 毫秒
991.
Zhao HC  Wu DM  Cui XL  Wu BW 《生理学报》2004,56(4):476-480
本文采用大鼠乳头肌张力测定及离体心脏灌流技术,研究大鼠心肌Na -Ca2 交换对乳头肌及离体灌流心肌变力性的影响。采用大鼠特异性Na -Ca2 交换激动剂E-4031能剂量依赖性地增加大鼠乳头肌的发展张力(P<0.05,n=6)及离体心脏的心泵功能(P<0.05,n=4);特异性Na -Ca2 交换抑制剂KB-R7943具有相反的效应,并可完全消除E-4031引起的正性变力作用。哇巴因(ouabain,0.5μmol/L)与E-4031(3μmol/L)联合使用,可使乳头肌发展张力由单独使用哇巴因时的0.25±0.03 g升高至0.29±0.04g(P<0.05,n=6);联合用药对大鼠离体心脏心泵功能的影响也强于哇巴因单独作用的效果。本研究结果证实,E-4031通过增强心肌Na -Ca2 交换,对大鼠乳头肌和离体心脏产生正性变力作用;与哇巴因合用时,它们的正性变力作用有相加作用。  相似文献   
992.
Herbivores that feed on toxic plants must overcome plant defenses and occasionally may even benefit from them. The current challenge is to understand how herbivores evolve the necessary physiological adaptations and which changes at the molecular level are involved. In this context we studied the leaf beetles genus Chrysochus (Coleoptera, Chrysomelidae). Two species of this genus, C. auratus and C. cobaltinus, feed on plants that contain toxic cardenolides. These beetles not only avoid poisoning by the toxin but also use it for their own defense against predators. All other Chrysochus species feed on plants that are devoid of cardenolides. The most important active principle of cardenolides is their capacity to bind to and thereby block the ubiquitous Na(+)/K(+)-ATPase responsible for maintaining cellular potentials. By analyzing the DNA sequence of the putative ouabain-binding site of the alpha-subunit of the Na(+)/K(+)-ATPase gene of Chrysochus and its close relatives feeding on plants with or without cardenolides, we here trace the evolution of cardenolide insensitivity in this group of beetles. The most interesting difference among the sequences involves the amino acid at position 122. Whereas all species that do not encounter cardenolides have an asparagine in this position, both Chrysochus species that feed on cardenolide plants have a histidine instead. This single amino acid substitution has already been shown to confer cardenolide insensitivity in the monarch butterfly. A mtDNA-based phylogeny corroborates the hypothesis that the asparagine at position 122 of the alpha-subunit of the Na(+)/K(+)-ATPase gene as observed in Drosophila and other insects is the plesiomorphic condition in this group of leaf beetles. The later host-plant switch to cardenolide-containing plants in the common ancestor of C. auratus and C. cobaltinus coincides with the exchange of the asparagine for a histidine in the ouabain binding site.  相似文献   
993.
994.
Viral capsids are dynamic structures which undergo a series of structural transformations to form infectious viruses. The dsDNA bacteriophage P22 is used as a model system to study the assembly and maturation of icosahedral dsDNA viruses. The P22 procapsid, which is the viral capsid precursor, is assembled from coat protein with the aid of scaffolding protein. Upon DNA packaging, the capsid lattice expands and becomes a stable virion. Limited proteolysis and biochemical experiments indicated that the coat protein consists of two domains connected by a flexible loop. To investigate the properties and roles of the sub-domains, we have cloned them and initiated structure and function studies. The N-terminal domain, which is made up of 190 amino acid residues, is largely unstructured in solution, while the C-terminal domain, which consists of 239 amino acid residues, forms a stable non-covalent dimer. The N-terminal domain adopts additional structure in the context of the C-terminal domain which might form a platform on which the N-terminal domain can fold. The local dynamics of the coat protein in both procapsids and mature capsids was monitored by hydrogen/deuterium exchange combined with mass spectrometry. The exchange rate for C-terminal domain peptides was similar in both forms. However, the N-terminal domain was more flexible in the empty procapsid shells than in the mature capsids. The flexibility of the N-terminal domain observed in the solution persisted into the procapsid form, but was lost upon maturation. The loop region connecting the two domains exchanged rapidly in the empty procapsid shells, but more slowly in the mature capsids. The global stabilization of the N-terminal domain and the flexibility encoded in the loop region may be a key component of the maturation process.  相似文献   
995.
Accumulation of misfolded proteins and alterations in the ubiquitin-proteasome pathway are associated with various neurodegenerative conditions of the CNS and PNS. Aggregates containing ubiquitin and peripheral myelin protein 22 (PMP22) have been observed in the Trembler J mouse model of Charcot-Marie-Tooth disease type 1A demyelinating neuropathy. In these nerves, the turnover rate of the newly synthesized PMP22 is reduced, suggesting proteasome impairment. Here we show evidence of proteasome impairment in Trembler J neuropathy samples compared with wild-type, as measured by reduced degradation of substrate reporters. Proteasome impairment correlates with increased levels of polyubiquitinated proteins, including PMP22, and the recruitment of E1, 20S and 11S to aggresomes formed either spontaneously due to the Trembler J mutation or upon proteasome inhibition. Furthermore, myelin basic protein, an endogenous Schwann cell proteasome substrate, associates with PMP22 aggregates in affected nerves. Together, our data show that in neuropathy nerves, reduced proteasome activity is coupled with the accumulation of ubiquitinated substrates, and the recruitment of proteasomal pathway constituents to aggregates. These results provide novel insights into the mechanism by which altered degradation of Schwann cell proteins may contribute to the pathogenesis of certain PMP22 neuropathies.  相似文献   
996.
The P22 tailspike protein folds by forming a folding competent monomer species that forms a dimeric, then a non-native trimeric (protrimer) species by addition of folding competent monomers. We have found three residues, R549, R563, and D572, which play a critical role in both the stability of the native tailspike protein and assembly and maturation of the protrimer. King and colleagues reported previously that substitution of R563 to glutamine inhibited protrimer formation. We now show that the R549Q and R563K variants significantly delay the protrimer-to-trimer transition both in vivo and in vitro. Previously, variants that destabilize intermediates have shown wild-type chemical stability. Interestingly, both the R549Q and R563K variants destabilize the tailspike trimer in guanidine denaturation studies, indicating that they represent a new class of tailspike folding variants. R549Q has a midpoint of unfolding at 3.2M guanidine, compared to 5.6M for the wild-type tailspike protein, while R563K has a midpoint of unfolding of 1.8 M. R549Q and R563K also denature over a broader pH range than the wild-type tailspike protein and both proteins have increased sensitivity to pH during refolding, suggesting that both residues are involved in ionic interactions. Our model is that R563 and D572 interact to stabilize the adjacent turn, aiding the assembly of the dimer and protrimer species. We believe that the interaction between R563 and D572 is also critical following assembly of the protrimer to properly orient D572 in order to form a salt bridge with R549 during protrimer maturation.  相似文献   
997.
Retinitis pigmentosa (RP) is a debilitating disease of the retina affecting ∼1.5 million people worldwide. RP shows remarkable heterogeneity both clinically and genetically, with more than 40 genetic loci implicated, 12 of which account for the autosomal dominant form (adRP) of inheritance. We have recently identified a French Canadian family that presents with early onset adRP. After exclusion of all known loci for adRP, a genome-wide search established firm linkage with a marker from the short arm of chromosome 9 (LOD score of 6.3 at recombination fraction θ=0). The linked region is flanked by markers D9S285 and D9S1874, corresponding to a genetic distance of 31 cM, in the region 9p22-p13.  相似文献   
998.
In yeast, Tom22, the central component of the TOMM (translocase of outer mitochondrial membrane) receptor complex, is responsible for the recognition and translocation of synthesized mitochondrial precursor proteins, and its protein kinase CK2-dependent phosphorylation is mandatory for TOMM complex biogenesis and proper mitochondrial protein import. In mammals, the biological function of protein kinase CSNK2/CK2 remains vastly elusive and it is unknown whether CSNK2-dependent phosphorylation of TOMM protein subunits has a similar role as that in yeast. To address this issue, we used a skeletal muscle-specific Csnk2b/Ck2β-conditional knockout (cKO) mouse model. Phenotypically, these skeletal muscle Csnk2b cKO mice showed reduced muscle strength and abnormal metabolic activity of mainly oxidative muscle fibers, which point towards mitochondrial dysfunction. Enzymatically, active muscle lysates from skeletal muscle Csnk2b cKO mice phosphorylate murine TOMM22, the mammalian ortholog of yeast Tom22, to a lower extent than lysates prepared from controls. Mechanistically, CSNK2-mediated phosphorylation of TOMM22 changes its binding affinity for mitochondrial precursor proteins. However, in contrast to yeast, mitochondrial protein import seems not to be affected in vitro using mitochondria isolated from muscles of skeletal muscle Csnk2b cKO mice. PINK1, a mitochondrial health sensor that undergoes constitutive import under physiological conditions, accumulates within skeletal muscle Csnk2b cKO fibers and labels abnormal mitochondria for removal by mitophagy as demonstrated by the appearance of mitochondria-containing autophagosomes through electron microscopy. Mitophagy can be normalized by either introduction of a phosphomimetic TOMM22 mutant in cultured myotubes, or by in vivo electroporation of phosphomimetic Tomm22 into muscles of mice. Importantly, transfection of the phosphomimetic Tomm22 mutant in muscle cells with ablated Csnk2b restored their oxygen consumption rate comparable to wild-type levels. In sum, our data show that mammalian CSNK2-dependent phosphorylation of TOMM22 is a critical switch for mitophagy and reveal CSNK2-dependent physiological implications on metabolism, muscle integrity and behavior.  相似文献   
999.
目的:探讨不同剂量朱砂七总蒽醌对H22荷瘤小鼠免疫功能及抗氧化能力的影响。方法:选取清洁级昆明小鼠60只,按照随机数字表法分为正常对照组、H22荷瘤组、环磷酰胺组、低剂量组、中剂量组、高剂量组,每组各10只。除正常对照组外,其余5组小鼠建立H22荷瘤小鼠模型。低剂量组、中剂量组、高剂量组分别给予0.3 g/kg、0.6 g/kg、1.2 g/kg的朱砂七总蒽醌悬浊液干预,环磷酰胺组给予0.02 g/kg的环磷酰胺干预,正常对照组和H22荷瘤组给予等剂量的1%的羧甲基纤维素钠干预。比较各组小鼠的肿瘤体质量、抑瘤率、T淋巴细胞亚群以及血清超氧化歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、丙二醛(MDA)、乳酸脱氢酶(LDH)水平。结果:环磷酰胺组、高剂量组的肿瘤体质量低于低剂量组,抑瘤率高于低剂量组,差异具有统计学意义(P0.05)。高剂量组的CD4+、CD4+/CD8+均高于环磷酰胺组、低剂量组、中剂量组,CD8+低于环磷酰胺组、低剂量组、中剂量组,差异均有统计学意义(P0.05)。高剂量组血清SOD、GSH-Px水平高于其他5组,MDA、LDH水平低于H22荷瘤组、低剂量组、中剂量组,差异均有统计学意义(P0.05)。结论:朱砂七总蒽醌具有明显的抗肿瘤作用,可增强小鼠的免疫功能和抗氧化能力,且具有剂量效应。  相似文献   
1000.
星形胶质细胞上调基因-1(AEG-1)是近年来研究较多的癌基因,但在神经系统疾病方面研究尚少。AEG-1与神经退行性疾病有关,然而其具体作用机制尚不明确。本研究通过设计靶向AEG-1 sgRNA序列并合成相应寡核苷酸,将其克隆到GV392质粒中,构建sgRNA/Cas9二合一表达载体,并进行慢病毒包装纯化。用慢病毒感染小鼠海马神经元HT22细胞,进行药物筛选和sgRNA活性鉴定,建立稳定的AEG-1基因敲除的细胞系;并进一步观察神经元HT22细胞的增殖与凋亡能力。结果显示,成功构建了3种靶向AEG-1基因的sgRNA/Cas9二合一表达载体。所设计的sgRNA的插入序列和开放阅读框架完全正确,成功建立了AEG-1基因敲除的稳转神经细胞系。进一步研究表明,AEG-1敲除后的神经HT22细胞与正常神经HT22细胞相比,细胞突起数目减少, 细胞周期阻滞,细胞凋亡率减少。以上结果为后续进一步研究AEG-1与神经系统疾病关系奠定了基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号