首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   892篇
  免费   78篇
  国内免费   44篇
  1014篇
  2024年   3篇
  2023年   20篇
  2022年   25篇
  2021年   32篇
  2020年   26篇
  2019年   40篇
  2018年   36篇
  2017年   28篇
  2016年   20篇
  2015年   28篇
  2014年   53篇
  2013年   67篇
  2012年   36篇
  2011年   45篇
  2010年   43篇
  2009年   53篇
  2008年   49篇
  2007年   41篇
  2006年   44篇
  2005年   52篇
  2004年   19篇
  2003年   30篇
  2002年   24篇
  2001年   20篇
  2000年   11篇
  1999年   6篇
  1998年   11篇
  1997年   8篇
  1996年   14篇
  1995年   6篇
  1994年   5篇
  1993年   12篇
  1992年   6篇
  1991年   8篇
  1990年   4篇
  1988年   7篇
  1987年   5篇
  1986年   3篇
  1985年   10篇
  1984年   9篇
  1983年   7篇
  1982年   7篇
  1981年   6篇
  1980年   5篇
  1978年   4篇
  1977年   6篇
  1976年   3篇
  1975年   5篇
  1974年   2篇
  1973年   4篇
排序方式: 共有1014条查询结果,搜索用时 0 毫秒
81.
We have looked at the effects of the cryoprotectant M22 upon viability in the model organism C. elegans. M22 is a well-known vitrification solution which has been successfully used in the laboratory to preserve organs destined for transplantation. M22 reduces survival of C. elegans in a concentration-dependent manner. M22 at concentrations of 10% (v/v) or higher inhibits progeny production and development. A few mutants in the ILS (insulin-like signaling) pathway of C. elegans are more resistant to the toxic effect of M22 compared to wild-type worms. Afatinib, an anti-cancer drug, protects against M22 toxicity. Afatinib by itself does not increase longevity.  相似文献   
82.
Polyamines are ubiquitous positively charged amines found in all organisms. These molecules play a crucial role in many biological functions including cell growth, gene regulation and differentiation. The three major polyamines produced in all mammalian cells are putrescine, spermidine and spermine. The intracellular levels of these polyamines depend on the interplay of the biosynthetic and catabolic enzymes of the polyamine and methionine salvage pathway, as well as the involvement of polyamine transporters. Polyamine levels are observed to be high in cancer cells, which contributes to malignant transformation, cell proliferation and poor patient prognosis. Considering the critical roles of polyamines in cancer cell proliferation, numerous anti-polyaminergic compounds have been developed as anti-tumor agents, which seek to suppress polyamine levels by specifically inhibiting polyamine biosynthesis, activating polyamine catabolism, or blocking polyamine transporters. However, in terms of the development of effective anti-cancer therapeutics targeting the polyamine system, these efforts have unfortunately resulted in little success. Recently, several studies using the iron chelators, O-trensox and ICL670A (Deferasirox), have demonstrated a decline in both iron and polyamine levels. Since iron levels are also high in cancer cells, and like polyamines, are required for proliferation, these latter findings suggest a biochemically integrated link between iron and polyamine metabolism.  相似文献   
83.
Epithelial-to-mesenchymal transition (EMT) is the process in which epithelial cells lose cell polarity and cell adhesion with surrounding cells to obtain migratory and invasive abilities. On the other hand, the expression of connexin is decreased or lacked in the many types of tumor cells. This study examined the effect of gap junctional intercellular communication (GJIC) on EMT induced by the transforming growth factor-β1 (TGF-β1). To investigate the effect of GJIC on EMT in U2OS cells, smooth muscle 22-α (sm22α) promoter-driven luciferase reporter gene was introduced into Cx43-expressing cells (U2OS-Luc Cx43) and into the control parental cell line (U2OS-Luc). TGF-β1 induced the expression of EMT markers and the sm22α promoter activity of U2OS-Luc cells. Sm22α promoter activity of U2OS cells was neither dependent on the expression of Cx43 nor on the establishment of GJIC among U2OS cells. Furthermore, we found that the homocellular communication among tumor cells did not affected the tumor cell growth and migration. However, we revealed that tumor cell density was an important factor for tumor cells to acquire metastatic phenotype. Interestingly, the co-culture of U2OS cells with osteoblasts revealed that sm22α promoter activity was inhibited only by the GJIC established between these two cell types. These results suggest that normal osteoblast cells negatively regulate the EMT of tumor cells, at least in part. Thus, Cx43-mediated GJIC may have anti-metastatic activity in tumor cells. Our findings provide a new insight into the role of GJIC in cancer progression and metastasis and identify potential therapeutic targets for the treatment of cancer.  相似文献   
84.
IL-22 is an immunoregulatory cytokine displaying pathological functions in models of autoimmunity like experimental psoriasis. Understanding molecular mechanisms driving IL-22, together with knowledge on the capacity of current immunosuppressive drugs to target this process, may open an avenue to novel therapeutic options. Here, we sought to characterize regulation of human IL22 gene expression with focus on the established model of Jurkat T cells. Moreover, effects of the prototypic immunosuppressant cyclosporin A (CsA) were investigated. We report that IL-22 induction by TPA/A23187 (T/A) or αCD3 is inhibited by CsA or related FK506. Similar data were obtained with peripheral blood mononuclear cells or purified CD3(+) T cells. IL22 promoter analysis (-1074 to +156 bp) revealed a role of an NF-AT (-95/-91 nt) and a CREB (-194/-190 nt) binding site for gene induction. Indeed, binding of CREB and NF-ATc2, but not c-Rel, under the influence of T/A to those elements could be proven by ChIP. Because CsA has the capability to impair IκB kinase (IKK) complex activation, the IKKα/β inhibitor IKKVII was evaluated. IKKVII likewise reduced IL-22 induction in Jurkat cells and peripheral blood mononuclear cells. Interestingly, transfection of Jurkat cells with siRNA directed against IKKα impaired IL22 gene expression. Data presented suggest that NF-AT, CREB, and IKKα contribute to rapid IL22 gene induction. In particular the crucial role of NF-AT detected herein may form the basis of direct action of CsA on IL-22 expression by T cells, which may contribute to therapeutic efficacy of the drug in autoimmunity.  相似文献   
85.
目的 探讨Th22细胞亚群和血清白介素-22(IL-22)水平在炎症性肠病(IBD)患者中的变化及其临床意义。 方法 选取2016年1月至2018年4月我院收治的125例IBD患者作为研究对象,其中克罗恩病(CD)组患者65例,溃疡性结肠炎(UC)组患者60例。选取同期进行体检的健康者50例作为对照组。比较各组对象Th22细胞亚群,血清IL-22、C-反应蛋白(CRP)、红细胞沉降率(ESR)水平,并进行相关性分析。 结果 CD组和UC组患者Th22细胞比例及IL-22、CRP、ESR水平均显著高于对照组(均P结论 Th22细胞亚群和IL-22水平与IBD患者病情严重程度关系密切,提示Th22细胞亚群和IL-22可能参与IBD发病过程中的炎症过程。  相似文献   
86.
87.
The neuronal cell line HT22 is an excellent model for studying Parkinson's disease. Growth differentiation factor 15 (GDF15) plays a critical role in Parkinson's disease, but the molecular mechanism involved are not well understood. We constructed the GDF15 overexpression HT22 cells and detected the effects of overexpression of GDF15 on the viability, oxygen consumption, mitochondrial membrane potential of oligomycin-treated HT22 cells. In addition, we used a high-throughput RNA-sequencing to study the lncRNA and mRNA expression profiling and obtained key lncRNAs, mRNA, gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathway. The expression of selected DElncRNAs was validated by quantitative real-time PCR (qRT-PCR). Our results showed that overexpression of GDF15 significantly reversed the cells viability, oxygen consumption, and mitochondrial membrane potential effect caused by oligomycin in HT22 cells. The 1093 DEmRNAs and 395 DElncRNAs in HT22 cells between GDF15-oligomycin non-intervention group and a normal control-oligomycin un-intervention group were obtained, and 394 DEmRNAs and 271 DElncRNAs in HT22 cells between GDF15-oligomycin intervention group and normal control-oligomycin intervention group were identified. Base on the GO and KEGG enrichment analysis of between GDF15-oligomycin intervention group and normal control-oligomycin intervention group, positive regulation of cell proliferation was most significantly enriched GO terms, and Cav1 was enriched in positive regulation of cell proliferation pathway. PI3K-Akt signaling pathway was one significantly enriched pathway in GDF15-oligomycin intervention group. The qRT-PCR results were consistent with RNA-sequencing, generally. GDF15 might promote mitochondrial function and proliferation of HT22 cells by regulating PI3K/Akt signaling pathway. Our study may be helpful in understanding the potential molecular mechanism of GDF15 in Parkinson's disease.  相似文献   
88.
Cre recombinase has become a ubiquitous tool in transgenic strategies for regulation of transgene expression in a tissue-specific manner. We report analysis of two SM22αCre lines and their ability to mediate genomic recombination in five independent Cre-responsive transgenic lines. One of the SM22αCre lines developed was a tet-on system based on the reverse tetracycline transactivator. Our goal was to use this strategy to inhibit the Notch signaling pathway specifically in smooth muscle cells. Our responder transgenes contained a constitutively expressed marker gene (chloramphenicol acetyltransferase, CAT), flanked by loxP sites in direct orientation, upstream of Notch-related transgenes. We developed two dominant negative Notch transgenic responder lines activated by Cre-mediated DNA recombination. The first is the extracellular domain of human Jagged1, and the second is the extracellular domain of the human Notch2 receptor. Despite high expression of the marker gene in all responder lines, we found that Cre-mediated genomic recombination between these five lines was highly variable, ranging from 46 to 93% of individuals using an SM22αCre activating strain, or 8–58% of individuals using an inducible SM22αrtTACre. In all cases examined, detection of recombination by PCR correlated with expression of the transgene as determined by Western blot analysis. Our studies reflect the variability in recombination success based on the responder strain, presumably due to inaccessibility of the locus of integration of the responder allele.  相似文献   
89.
90.
Voltage-dependent anion channel (VDAC) is a porin known by its role in metabolite transport across mitochondria and participation in apoptotic processes. Although traditionally accepted to be located within mitochondrial outer membrane, some data has also reported its presence at the plasma membrane level where it seems to participate in regulation of normal redox homeostasis and apoptosis. Here, exposure of septal SN56 and hippocampal HT22 cells to specific anti-VDAC antibodies prior to amyloid beta (Aβ) peptide was observed to prevent neurotoxicity. In these cell lines, we identified a VDAC form associated with the plasma membrane that seems to be particularly abundant in caveolae. The two membrane-related isoforms of estrogen receptor α (mERα) (80 and 67 kDa), known in SN56 cells to participate in estrogen-induced neuroprotection against Aβ injury, were also observed to be present in caveolae. Interestingly, we demonstrated for the first time that both VDAC and mERα interact at the plasma membrane of these neurons as well as in microsomal fractions of the corresponding murine septal and hippocampal tissues. These proteins were also shown to associate with caveolin-1, thereby corroborating their presence in caveolar microdomains. Taken together, these results suggest that VDAC-mERα association at the plasma membrane level may participate in the modulation of Aβ-induced cell death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号