首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   886篇
  免费   77篇
  国内免费   44篇
  2023年   16篇
  2022年   25篇
  2021年   32篇
  2020年   26篇
  2019年   39篇
  2018年   36篇
  2017年   28篇
  2016年   20篇
  2015年   28篇
  2014年   53篇
  2013年   67篇
  2012年   36篇
  2011年   45篇
  2010年   43篇
  2009年   53篇
  2008年   49篇
  2007年   41篇
  2006年   44篇
  2005年   52篇
  2004年   19篇
  2003年   30篇
  2002年   24篇
  2001年   20篇
  2000年   11篇
  1999年   6篇
  1998年   11篇
  1997年   8篇
  1996年   14篇
  1995年   6篇
  1994年   5篇
  1993年   12篇
  1992年   6篇
  1991年   8篇
  1990年   4篇
  1988年   7篇
  1987年   5篇
  1986年   3篇
  1985年   10篇
  1984年   9篇
  1983年   7篇
  1982年   7篇
  1981年   6篇
  1980年   5篇
  1979年   2篇
  1978年   4篇
  1977年   6篇
  1976年   3篇
  1975年   5篇
  1974年   2篇
  1973年   4篇
排序方式: 共有1007条查询结果,搜索用时 15 毫秒
71.
The gene encoding an alkaline active cyclodextrin glycosyltransferase (CGTase) from the alkaliphilic B. agaradhaerens LS-3C was cloned and sequenced. It encodes a mature polypeptide of 679 amino acids with a molecular mass of 76488 Da. The deduced amino acid sequence of the mature CGTase revealed 99 and 95% identity to the CGTase sequences from the other B. agaradhaerens strains, DSM 8721T and 9948, respectively. The next closest identity was of 59% with B. clarkii enzyme. CGTases from B. agaradhaerens, B. clarkii, and B. firmus/lentus formed a phylogenetically separated cluster from the other CGTases of Bacillus spp. origin. A number of usually conserved residues in the CGTases were found to be replaced in the sequence of B. agaradhaerens enzyme. The sequence analysis indicated the enzyme to be close to the so-called `intermediary enzymes' in the -amylase family.  相似文献   
72.
Fed-batch cultures of Bacillus licheniformis produced poly--glutamic acid (PGA), a water-soluble biodegradable polymer. PGA reached 35 g l–1 with a productivity of 1 g l–1 h–1 by pulsed-feeding of citric acid (1.44 g h–1) and l-glutamic acid (2.4 g h–1) when citric acid was depleted from the culture medium.  相似文献   
73.
After intravenous administration of the vitamin D3 analog, 22-oxacalcitriol (OCT), to normal rats plasma metabolites were investigated by HPLC, GC-MS and LC-MS. Five side-chain oxidation metabolites, 24R(OH)OCT, 24S(OH)OCT, (25R)-26(OH)OCT, (25S)-26(OH)OCT and 24oxoOCT, were identified by comparison with the corresponding synthetic compounds. These side-chain oxidation metabolites were similar to those of calcitriol [1,25(OH)2 vitamin D3] described previously. Besides these five metabolites, two unique side-chain cleavage metabolites, 20S(OH)-hexanor-OCT and 17,20S(OH)2-hexanor-OCT, were identified as main metabolites in plasma by GC-MS and LC-MS using a specific chemical reaction. Our studies suggest that OCT is extensively metabolized and circulates in blood as a number of metabolites as well as unchanged OCT. This metabolism includes both unique pathways of C23-O22 cleavage and 17-hydroxylation, in addition to the side-chain oxidation metabolites similar to those of 1,25-(OH)2D3.  相似文献   
74.
Cholesterosis is a disease of cholesterol metabolism characterized by the presence of excessive lipid droplets in the cytoplasm. These lipid droplets are mainly composed of cholesterol esters derived from free cholesterol. The removal of excess cholesterol from gallbladder epithelial cells (GBECs) is very important for the maintenance of intracellular cholesterol homeostasis and the preservation of gallbladder function. Several lines of evidence have indicated that the activation of either peroxisome proliferator-activated receptor gamma (PPARγ) or liver X receptor α (LXRα) relates to cholesterol efflux. While pioglitazone can regulate the activation of PPARγ, 22(R)-hydroxycholesterol can activate LXRα and is a metabolic intermediate in the biosynthesis of steroid hormones. However, the effect of 22(R)-hydroxycholesterol in combination with pioglitazone on cholesterosis of the gallbladder is unclear. GBECs were treated with pioglitazone, 22(R)-hydroxycholesterol or PPARγ siRNA followed by Western blot analysis for ATP-binding cassette transporter A1 (ABCA1), PPARγ and LXRα. Cholesterol efflux to apoA-I was determined, and Oil Red O staining was performed to monitor variations in lipid levels in treated GBECs. Our data showed that 22(R)-hydroxycholesterol can modestly up-regulate LXRα while simultaneously increasing ABCA1 by 56%. The combination of 22(R)-hydroxycholesterol and pioglitazone resulted in a 3.64-fold increase in ABCA1 expression and a high rate of cholesterol efflux. Oil Red O staining showed an obvious reduction in the lipid droplets associated with cholesterosis in GBECs. In conclusion, the present findings indicate that the anti-lipid deposition action of 22(R)-hydroxycholesterol combined with pioglitazone involves the activation of the PPARγ–LXRα–ABCA1 pathway, increased ABCA1 expression and the efflux of cholesterol from GBECs. Thus, 22(R)-hydroxycholesterol synergistically combined with pioglitazone to produce a remarkable effect on lipid deposition in cholesterosis GBECs.  相似文献   
75.
76.
Gastric cancer (GC) is the second common cause of cancer-related death worldwide. microRNAs (miRNAs) play important roles in the carcinogenesis of GC. Here, we found that miR-22 was significantly decreased in GC tissue samples and cell lines. Ectopic overexpression of miR-22 remarkably suppressed cell proliferation and colony formation of GC cells. Moreover, overexpression of miR-22 significantly suppressed migration and invasion of GC cells. CD151 was found to be a target of miR-22. Furthermore, overexpression of CD151 significantly attenuated the tumor suppressive effect of miR-22. Taken together, miR-22 might suppress GC cells growth and motility partially by inhibiting CD151.  相似文献   
77.
Reactive oxygen species (ROS) have emerged as signals in the responses of plants to stress. Arabidopsis Enhanced Disease Susceptibility1 (EDS1) regulates defense and cell death against biotrophic pathogens and controls cell death propagation in response to chloroplast‐derived ROS. Arabidopsis Nudix hydrolase7 (nudt7) mutants are sensitized to photo‐oxidative stress and display EDS1‐dependent enhanced resistance, salicylic acid (SA) accumulation and initiation of cell death. Here we explored the relationship between EDS1, EDS1‐regulated SA and ROS by examining gene expression profiles, photo‐oxidative stress and resistance phenotypes of nudt7 mutants in combination with eds1 and the SA‐biosynthetic mutant, sid2. We establish that EDS1 controls steps downstream of chloroplast‐derived O2?? that lead to SA‐assisted H2O2 accumulation as part of a mechanism limiting cell death. A combination of EDS1‐regulated SA‐antagonized and SA‐promoted processes is necessary for resistance to host‐adapted pathogens and for a balanced response to photo‐oxidative stress. In contrast to SA, the apoplastic ROS‐producing enzyme NADPH oxidase RbohD promotes initiation of cell death during photo‐oxidative stress. Thus, chloroplastic O2?? signals are processed by EDS1 to produce counter‐balancing activities of SA and RbohD in the control of cell death. Our data strengthen the idea that EDS1 responds to the status of O2?? or O2??‐generated molecules to coordinate cell death and defense outputs. This activity may enable the plant to respond flexibly to different biotic and abiotic stresses in the environment.  相似文献   
78.
79.
GABAB receptors mediate slow inhibitory effects of the neurotransmitter γ-aminobutyric acid (GABA) on synaptic transmission in the central nervous system. They function as heterodimeric G-protein-coupled receptors composed of the seven-transmembrane domain proteins GABAB1 and GABAB2, which are linked through a coiled-coil interaction. The ligand-binding subunit GABAB1 is at first retained in the endoplasmic reticulum and is transported to the cell surface only upon assembly with GABAB2. Here, we report that GABAB1, via the coiled-coil domain, can also bind to soluble proteins of unknown function, that are affected in 22q11 deletion/DiGeorge syndrome and are therefore referred to as DiGeorge critical region 6 (DGCR6). In transfected neurons the GABAB1-DGCR6 association resulted in a redistribution of both proteins into intracellular clusters. Furthermore, the C-terminus of GABAB2 interfered with the novel interaction, consistent with heterodimer formation overriding transient DGCR6-binding to GABAB1. Thus, sequential coiled-coil interactions may direct GABAB1 into functional receptors.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号