首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2408篇
  免费   114篇
  国内免费   100篇
  2023年   21篇
  2022年   39篇
  2021年   50篇
  2020年   39篇
  2019年   66篇
  2018年   70篇
  2017年   46篇
  2016年   38篇
  2015年   49篇
  2014年   157篇
  2013年   170篇
  2012年   125篇
  2011年   115篇
  2010年   108篇
  2009年   122篇
  2008年   107篇
  2007年   147篇
  2006年   112篇
  2005年   92篇
  2004年   57篇
  2003年   66篇
  2002年   51篇
  2001年   39篇
  2000年   39篇
  1999年   22篇
  1998年   45篇
  1997年   27篇
  1996年   31篇
  1995年   36篇
  1994年   34篇
  1993年   36篇
  1992年   32篇
  1991年   24篇
  1990年   28篇
  1989年   23篇
  1988年   43篇
  1987年   31篇
  1986年   14篇
  1985年   45篇
  1984年   55篇
  1983年   42篇
  1982年   35篇
  1981年   28篇
  1980年   17篇
  1979年   7篇
  1978年   10篇
  1977年   10篇
  1976年   5篇
  1975年   6篇
  1973年   5篇
排序方式: 共有2622条查询结果,搜索用时 156 毫秒
61.
62.
Prostate cancer (PCa) is one of the most common malignancies in men. Ribosomal protein L22-like1 (RPL22L1), a component of the ribosomal 60 S subunit, is associated with cancer progression, but the role and potential mechanism of RPL22L1 in PCa remain unclear. The aim of this study was to investigate the role of RPL22L1 in PCa progression and the mechanisms involved. Bioinformatics and immunohistochemistry analysis showed that the expression of RPL22L1 was significantly higher in PCa tissues than in normal prostate tissues. The cell function analysis revealed that RPL22L1 significantly promoted the proliferation, migration and invasion of PCa cells. The data of xenograft tumour assay suggested that the low expression of RPL22L1 inhibited the growth and invasion of PCa cells in vivo. Mechanistically, the results of Western blot proved that RPL22L1 activated PI3K/Akt/mTOR pathway in PCa cells. Additionally, LY294002, an inhibitor of PI3K/Akt pathway, was used to block this pathway. The results showed that LY294002 remarkably abrogated the oncogenic effect of RPL22L1 on PCa cell proliferation and invasion. Taken together, our study demonstrated that RPL22L1 is a key gene in PCa progression and promotes PCa cell proliferation and invasion via PI3K/Akt/mTOR pathway, thus potentially providing a new target for PCa therapy.  相似文献   
63.
Thirty nine clinical isolates of Acinetobacter belonging to six species were tested for resistance to 20 metal ions and their ability to produce -lactamase. Fifty two percent of the strains produced -lactamase. -Lactamase producers and non-producers were almost equally distributed in the different species. A. baumannii was the predominant biotype and was found to be most resistant to metals. Resistance to mercury was prevalent in -lactamase-producing A. baumannii only. Silver resistant strains of A. baumannii produced -lactamase. Sensitivity and resistance to copper and cadium was equally distributed between -lactamase producers and non-producers. -Lactamase-producer and -non-producer strains were uniformly sensitive to cadmium except Acinetobacter genospecies 1.  相似文献   
64.
为了优化草菇子实体多肽的提取工艺和探究其抗氧化活性,以草菇子实体为原料,采用酶解法提取草菇子实体多肽,通过单因素试验得出最佳的酶解工艺,并使用Box-Behnken设计试验组合。结果表明:草菇子实体提取多肽的最佳工艺为料液比1:52 (g/mL)、加酶量7 200 U/g、酶解温度43 ℃,此工艺条件下的多肽得率为67.76%。从1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除能力、铁离子还原能力、超氧阴离子自由基清除能力和羟自由基清除能力4个方面研究其体外抗氧化能力,结果表明,草菇子实体多肽对DPPH自由基清除率为74.11%,超氧阴离子自由基和羟自由基清除率分别在69.64%和91.83%达到稳定,草菇子实体多肽还具有一定的还原力,说明草菇子实体多肽可以作为优质抗氧化肽的良好来源。该研究为草菇多肽的高效制备和抗氧化肽等高附加值产品的研发提供理论依据。  相似文献   
65.
66.
Conifers of the boreal zone encounter considerable combined stress of low temperature and high light during winter, when photosynthetic consumption of excitation energy is blocked. In the evergreen Pinus sylvestris L. these stresses coincided with major seasonal changes in photosystem II (PSII) organisation and pigment composition. The earliest changes occurred in September, before any freezing stress, with initial losses of chlorophyll, the D1-protein of the PSII reaction centre and of PSII light-harvesting-complex (LHC II) proteins. In October there was a transient increase in F0, resulting from detachment of the light-harvesting antennae as reaction centres lost D1. The D1-protein content eventually decreased to 90%, reaching a minimum by December, but PSII photochemical efficiency [variable fluorescence (Fv)/maximum fluorescence (Fm)] did not reach the winter minimum until mid-February. The carotenoid composition varied seasonally with a twofold increase in lutein and the carotenoids of the xanthophyll cycle during winter, while the epoxidation state of the xanthophylls decreased from 0.9 to 0.1 from October to January. The loss of chlorophyll was complete by October and during winter much of the remaining chlorophyll was reorganised in aggregates of specific polypeptide composition, which apparently efficiently quench excitation energy through non-radiative dissipation. The timing of the autumn and winter changes indicated that xanthophyll de-epoxidation correlates with winter quenching of chlorophyll fluorescence while the drop in photochemical efficiency relates more to loss of D1-protein. In April and May recovery of the photochemistry of PSII, protein synthesis, pigment rearrangements and zeaxanthin epoxidation occurred concomitantly. Indoor recovery of photosynthesis in winter-stressed branches under favourable conditions was completed within 3 d, with rapid increases in F0, the epoxidation state of the xanthophylls and in light-harvesting polypeptides, followed by recovery of D1-protein content and Fv/Fm, all without net increase in chlorophyll. The fall and winter reorganisation allow Pinus sylvestris to maintain a large stock of chlorophyll in a quenched, photoprotected state, allowing rapid recovery of photosynthesis in spring.Abbreviations Elips early light-induced proteins - EPS epoxidation state - F0 instantaneous fluorescence - Fm maximum fluorescence - Fv variable fluorescence - LHC II light-harvesting complex of PSII - LiDS lithium dodecyl sulfate This research was supported by the Swedish Natural Science Research Council. We wish to thank Dr. Adrian Clarke1 (Department of Plant Physiology, University of Umeå, Sweden) for advice on electrophoresis, valuable discussion and providing antibodies. Dr. Stefan Jansson1 and Dr. Torill Hundal (Department for Biochemistry, University of Stockholm, Sweden) provided antibodies. Jan Karlsson1 helped with the HPLC, Dr. Marianna Krol gave advice on green gels and Dr. Vaughan Hurry (Cooperative Research Centre for Plant Sciences, Australian National University, Canberra, Australia) provided valuable discussion.  相似文献   
67.
68.
Abstract: Two forms of pituitary adenylate cyclase-activating polypeptide (PACAP), the 38- and 27-amino-acid forms (PACAP38 and PACAP27, respectively), which share amino acid sequence homology with vasoactive intestinal peptide (VIP), were evaluated for their abilities to regulate sympathetic neuron catecholamine and neuropeptide Y (NPY) expression. PACAP38 and PACAP27 potently and efficaciously stimulated NPY and catecholamine secretion in primary cultured superior cervical ganglion (SCG) neurons; 100- to 1,000-fold higher concentrations of VIP were required to modulate secretion, suggesting that SCG neurons express the PACAP-selective type I receptor. PACAP38 elicited a sustained seven- to ninefold increase in the rate of NPY secretion and three-fold stimulation in the rate of catecholamine release. PACAP38 and PACAP27 produced parallel neuronal NPY and catecholamine release, but cellular levels of NPY and catecholamines were differentially regulated. Sympathetic neuron NPY content was decreased, whereas cellular total catecholamine levels were elevated by the PACAP peptides; total NPY and catecholamine levels (secreted plus cellular content) were increased. In concert with the increased total peptide and transmitter production, pro-NPY and tyrosine hydroxylase mRNA levels were elevated. Furthermore, PACAP38 was more efficacious than PACAP27 in regulating pro-NPY and tyrosine hydroxylase mRNA. SCG neuronal expression of mRNA encoding the type I PACAP receptor further supported the studies demonstrating that sympathetic neuronal levels of NPY and catecholamine content and secretion and mRNA are differentially regulated by the PACAP peptides.  相似文献   
69.
Abstract: In cultured bovine adrenal medullary cells, stimulation of nicotinic receptors by carbachol evoked the Ca2+-dependent exocytotic cosecretion of proadrenomedullin N-terminal 20 peptide (PAMP) (EC50 = 50.1 µ M ) and catecholamines (EC50 = 63.0 µ M ), with the molar ratio of PAMP/catecholamines secreted being equal to the ratio in the cells. Addition of PAMP[1–20]NH2 inhibited carbachol-induced 22Na+ influx via nicotinic receptors (IC50 = 2.5 µ M ) in a noncompetitive manner and thereby reduced carbachol-induced 45Ca2+ influx via voltage-dependent Ca2+ channels (IC50 = 1.0 µ M ) and catecholamine secretion (IC50 = 1.6 µ M ). It did not alter high K+-induced 45Ca2+ influx via voltage-dependent Ca2+ channels or veratridine-induced 22Na+ influx via voltage-dependent Na+ channels. PAMP seems to be a novel antinicotinic peptide cosecreted with catecholamines by a Ca2+-dependent exocytosis in response to nicotinic receptor stimulation.  相似文献   
70.
Abstract: The presence of receptors for the novel neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has been recently demonstrated in the external granule cell layer of the cerebellum, a germinative matrix that generates the majority of cerebellar interneurons. In the present study, we have taken advantage of the possibility of obtaining a culture preparation that is greatly enriched in immature cerebellar granule cells to investigate the effect of PACAP on the adenylyl cyclase and phospholipase C transduction pathways. The two molecular forms of PACAP, i.e., 27-(PACAP27) and 38-(PACAP38) amino-acid forms of PACAP, induced a dose-dependent stimulation of cyclic AMP production in granule cells. The potencies of PACAP27 and PACAP38 were similar (ED50 = 0.12 ± 0.01 and 0.23 ± 0.07 n M , respectively), whereas vasoactive intestinal polypeptide (VIP) was ∼100 times less potent. PACAP27 and PACAP38 also induced a dose-dependent stimulation of polyphosphoinositide breakdown (ED50 = 19.1 ± 6.3 and 13.4 ± 6.0 n M , respectively), whereas VIP had no effect on polyphosphoinositide metabolism. The effect of PACAP38 on inositol phosphate formation was significantly reduced by U-73122 and by pertussis toxin, indicating that activation of PACAP receptors causes stimulation of a phospholipase C through a pertussis toxin-sensitive G protein. In contrast, forskolin and dibutyryl cyclic AMP did not affect PACAP-induced stimulation of inositol phosphates. Taken together, the present results demonstrate that PACAP stimulates independently the adenylyl cyclase and the phospholipase C transduction pathways in immature cerebellar granule cells. These data favor the concept that PACAP may play important roles in the control of proliferation and/or differentiation of cerebellar neuroblasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号