首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148672篇
  免费   8354篇
  国内免费   10229篇
  167255篇
  2023年   1864篇
  2022年   2934篇
  2021年   3754篇
  2020年   3712篇
  2019年   5103篇
  2018年   4188篇
  2017年   3255篇
  2016年   3691篇
  2015年   5104篇
  2014年   7833篇
  2013年   10477篇
  2012年   6371篇
  2011年   8681篇
  2010年   6508篇
  2009年   7098篇
  2008年   7429篇
  2007年   7636篇
  2006年   6940篇
  2005年   6231篇
  2004年   5419篇
  2003年   4676篇
  2002年   4152篇
  2001年   3114篇
  2000年   2706篇
  1999年   2768篇
  1998年   2523篇
  1997年   2204篇
  1996年   2037篇
  1995年   2191篇
  1994年   2042篇
  1993年   1874篇
  1992年   1844篇
  1991年   1587篇
  1990年   1403篇
  1989年   1332篇
  1988年   1264篇
  1987年   1210篇
  1986年   902篇
  1985年   1376篇
  1984年   1851篇
  1983年   1322篇
  1982年   1726篇
  1981年   1241篇
  1980年   1222篇
  1979年   1126篇
  1978年   705篇
  1977年   574篇
  1976年   471篇
  1975年   343篇
  1973年   358篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The purpose of this work was to test whether induction of massive -carotene synthesis in the alga Dunaliella bardawil is triggered by oxygen radicals. The following results were obtained: (i) The induction of -carotene synthesis is preceded by a lag period of about 4 h during which the cells swell and photosynthesis is partially inhibited, (ii) Addition of promoters of oxygen radicals or of azide (an inhibitor of catalase and superoxide dismutase) during the induction period, under conditions which are suboptimal for massive -carotene accumulation, greatly enhances -carotene synthesis, photodegradation of chlorophyll and inhibition of photosynthesis, (iii) High irradiance, which induces massive -carotene accumulation, also induces a high catalase activity. It is suggested that photosynthetically produced oxygen radicals are involved in triggering massive -carotene accumulation in D. bardawil.  相似文献   
992.
Excised stem sections of deepwater rice (Oryza sativa L.) containing the highest internode were used to study the induction of rapid internodal elongation by gibberellin (GA). It has been shown before that this growth response is based on enhanced cell division in the intercalary meristem and on increased cell elongation. In both GA-treated and control stem sections, the basal 5-mm region of the highest internode grows at the fastest rate. During 24 h of GA treatment, the internodal elongation zone expands from 15 to 35 mm. Gibberellin does not promote elongation of internodes from which the intercalary meristem has been excised. The orientation of cellulose microfibrils (CMFs) is a determining factor in cell growth. Elongation is favored when CMFs are oriented transversely to the direction of growth while elongation is limited when CMFs are oriented in the oblique or longitudinal direction. The orientation of CMFs in parenchymal cells of GA-treated and control internodes is transverse throughout the internode, indicating that CMFs do not restrict elongation of these cells. Changes in CMF orientation were observed in epidermal cells, however. In the basal 5-mm zone of the internode, which includes the intercalary meristem, CMFs of the epidermal cell walls are transversely oriented in both GA-treated and control stem sections. In slowly growing control internodes, CMF orientation changes to the oblique as cells are displaced from this basal 5-mm zone to the region above it. In GA-treated rapidly growing internodes, the reorientation of CMFs from the transverse to the oblique is more gradual and extends over the 35-mm length of the elongation zone. The CMFs of older epidermal cells are obliquely oriented in control and GA-treated internodes. The orientation of the CMFs parallels that of the cortical microtubules. This is consistent with the hypothesis that cortical microtubules determine the direction of CMF deposition. We conclude that GA acts on cells that have transversely oriented CMFs but does not promote growth of cells whose CMFs are already obliquely oriented at the start of GA treatment.  相似文献   
993.
A study was initiated to determine the number, chromosomal location, and magnitude of effect of QTL (quantitative trait loci or locus depending on context) controlling protein and starch concentration in the maize (Zea mays L.) kernel. Restriction fragment length polymorphism (RFLP) analysis was performed on 100 F3 families derived from a cross of two strains, Illinois High Protein (IHP), X Illinois Low Protein (ILP), which had been divergently selected for protein concentration for 76 generations as part of the Illinois Long Term Selection Experiment. These families were analyzed for kernel protein and starch in replicated field trials during 1990 and 1991. A series of 90 genomic and cDNA clones distributed throughout the maize genome were chosen for their ability to detect RFLP between IHP and ILP. These clones were hybridized with DNA extracted from the 100 F3 families, revealing 100 polymorphic loci. Single factor analysis of variance revealed significant QTL associations of many loci with both protein and starch concentration (P < 0.05 level). Twenty-two loci distributed on 10 chromosome arms were significantly associated with protein concentration, 19 loci on 9 chromosome arms were significantly associated with starch concentration. Sixteen of these loci were significant for both protein and starch concentration. Clusters of 3 or more significant loci were detected on chromosome arms 3L, 5S, and 7L for protein concentration, suggesting the presence of QTL with large effects at these locations. A QTL with large additive effects on protein and starch concentration was detected on chromosome arm 3L. RFLP alleles at this QTL were found to be linked with RFLP alleles at the Shrunken-2 (Sh2) locus, a structural gene encoding the major subunit of the starch synthetic enzyme ADP-glucose pyrophosphorylase. A multiple linear regression model consisting of 6 significant RFLP loci on different chromosomes explained over 64 % of the total variation for kernel protein concentration. Similar results were detected for starch concentration. Thus, several chromosomal regions with large effects may be responsible for a significant portion of the changes in kernel protein and starch concentration in the Illinois Long Term Selection Experiment.  相似文献   
994.
The extracellular protein EP2 was previously identified as non-specific lipid transfer protein based on its cDNA-derived amino acid sequence. Here, the purification of the EP2 protein from the medium of somatic embryo cultures is described. After two cycles of ion-exchange and gel permeation chromatography, a single silver-stained protein band with an apparent molecular mass of 10 kDa was observed on SDS-PAGE. This protein band was recognized by the antiserum raised against a EP2--galactosidase fusion-protein. Employing a fluorescent phospholipid analog, it was shown that the purified EP2 protein is capable of binding phospholipids and is able to enhance their transfer between artificial membranes. Employing a gel permeation assay, it could be demonstrated that the EP2 protein is also capable of binding palmitic and oleic acid as well as oleyl-CoA. Because in plants these fatty acids are used as precursor molecules for cutin, these results are in support of the proposed role of the EP2 protein to transport cutin monomers from their site of synthesis through the cell wall of epidermal cells to sites of cutin polymerization.  相似文献   
995.
The signal transduction initiated by the human cytokine interleukin-8 (IL-8), the main chemotactic cytokine for neutrophils, was investigated and found to encompass the stimulation of protein kinases. More specifically, IL-8 caused a transient, dose and time dependent activation of a Ser/Thr kinase activity towards myelin basic protein (MBP) and the MBP-derived peptide APRTPGGRR patterned after the specific concensus sequence in MBP for ERK enzymes. The activated MBP kinase was furthermore identified as an extracellular signal regulated kinase (ERK1) based on several criteria such as substrate specificity, molecular weight, activation-dependent mobility shift, and recognition by anti-ERK antibodies. For comparison, the chemotactic response of neutrophils to a stimulus of bacterial origin (fMet-Leu-Phe or fMLP) was also examined and found to involve the activation of a similar ERK enzyme. The present data clearly indicate that in terminally differentiated, non-proliferating human cells, the MBP kinase/ERK activity can serve other purposes than mitogenic signaling, and that processes such as chemotaxis, induced by bacterial peptides as well as by human cytokines like IL-8, involve the regulation of ERK enzyme.Abbreviations IL-8 interleukin-8 - fMLP fMet-Leu-Phe - MBP myelin basic protein - ERK extracellular signal regulated kinase - MAP2 microtubule-associated protein 2 - PK-A cAMP dependent protein kinase - PKI protein kinase inhibitor - PMSF phenyl-methanesulfonyl fluoride - PVDF poly-vinylidene difluoride - HBSF Hank's buffered salt solution - DAB 3,3-diaminobenzidine tetrahydrochloride - PNPP p-nitrophenyl-phosphate - HSA human serum albumin - EGTA [ethylenebis (oxyethylenenitrilo)]tetraacetic acid - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   
996.
We have shown earlier that prostacylin (PGI2) and its stable analogue: 7-oxo-prostacyclin(7-OXO) may induce a prolonged, late appearing (24–48 h after drug administration), dose dependent protection of the heart from harmful consequences of a subsequent severe ischaemic stress, such as myocardial ischaemia, life-threatening ventricular arrhythmias and early ischaemic morphological changes. In an other study we observed that a similar but shortlived (less than 1 h) cardioprotection, induced by preconditioning brief coronary artery occlusions, is greatly reduced by blockade of the cyclooxygenase pathway, suggesting that prostanoids might play a role in this shortlasting protection.Objective of our present study was to elucidate the importance of some arachidonic acid (AA) metabolites, such as PGI2 and thromboxane A2 (TXA2) in the mechanism of the late appearing, prolonged cardioprotection. Estimation of the metabolites: 6-keto-PGF1 (6-KETO) and thromboxane B2 (TXB2) was made from the perfusate of isolated Langendorff hearts of guinea-pigs pretreated with 50 g/kg 7-OXO, 24 and 48 h before preparation. Pretreatment alone produced a slight, but significant elevation of 6-KETO (from 206±11 to 284±19 pg/ml/min after 24 h, and to 261±18 pg/ml/min after 48 h). No change was seen in TXB2 production. Global ischaemia for 25 min (followed by 25 min reperfusion) markedly increased the release of both AA metabolites; maximal values were observed in the third min of reperfusion (6-KETO from 206±11 to 1275±55 pg/ml/min and TXB2 from 29±4 to 172±12 pg/ml/min). All values returned to the preischaemic level by the 25th min of reperfusion. Ischaemic increase in 6-KETO level was significantly higher in the perfusate of hearts from pretreated animals (1507±73 pg/ml/min after 24 h, and 1398±54 pg/ml/min after 48 h) that in those of untreated controls. There was no difference in TXB2 values. Thus both basal and ischaemic release of PGI2 increased 24 and 48 h after pretreatment with 7-OXO but not TXA2 production. Results suggest that endogenous prostanoids might play a role in late appearing cardioprotection.  相似文献   
997.
On the basis of protein modification studies and primary structure comparison, we propose that the SKS sequence within the KMSKS signature of the class 1 aminoacyl-tRNA synthetases corresponds to the GKT(or S) sequence considered as a signature of the nucleotide triphosphate-binding site of many proteins.  相似文献   
998.
Enterally administered, heme is a good source of iron in humans and other animals, but the metabolism of heme by enterocytes has not been fully characterized. Caco-2 cells in culture provide a useful model for studying cells that resemble small intestinal epithelium, both morphologically and functionally. In this paper we show that heme oxygenase, the rate-controlling enzyme of heme catabolism, is present in abundance in Caco-2 cells, and that levels of its mRNA and activity can be increased by exposure of the cells to heme or metal ions (cadmium, cobalt). Caco-2 cells also contain biliverdin reductase activity which, in the basal state, is similar to that of heme oxygenase (approximately 40 pmole of product per mg protein per minute); however, when heme oxygenase is induced, biliverdin reductase may become rate-limiting for bilirubin production.Abbreviations BVR biliverdin reductase - DMEM Dulbecco's modified Eagles medium - DMSO dimethyl sulfoxide - HO heme oxygenase - 1xSSC a solution of 0.015 M sodium citrate/0.15 sodium chloride  相似文献   
999.
The effect of -alanyl-L-histidinato zinc (AHZ) on bone metabolism was investigated in osteoblastic MC3T3-El cells. Cells were cultured for 3 days at 37°C in a CO2 incubator in plastic dishes containing -modified minimum essential medium supplemented with 10% fetal bovine serum. After the cultures, the medium was exchanged for that containing 0.1% bovine serum albumin plus various concentrations of AHZ or other reagents, and the cells were cultured further for appropriate periods of time. The presence of AHZ (10–7–10–5M) stimulated the proliferation of cells. AHZ (10–6 and 10–5M) increased deoxyribonucleic acid (DNA) content in the cells with 48hr-culture. This increase was completely blocked by the presence of cycloheximide (10–6M) or hydroxyurea (10–3M). Also, the presence of cycloheximide (10–6M) completely inhibited the AHZ (10–5M)-induced increase in the proliferation of cells. Meanwhile, parathyroid hormone (10–7M), estrogen (10–9M) and insulin (10–M) significantly increased cellular DNA content. However, these hormonal effects clearly lowered in comparison with that of AHZ (10–5M). Dibutyryl cyclic AMP (10–4M) and zinc sulfate (10–5M) did not cause a significant increase in cellular DNA content. The present results support the view that AHZ has a direct specific proliferative effect on osteoblastic cellsin vitro and that this effect is dependent on protein synthesis.  相似文献   
1000.
A particular lot of the zwitterionic buffer, 2(N-morpholino) ethane sulfonic acid (MES), contained a contaminant that inhibited a number of fungal NADP-dependent dehydrogenases. Enzymes that were particularly sensitive include 6-phosphogluconate dehydrogenases fromCryptococcus neoformans andSchizophyllum commune and glucose-6-phosphate dehydrogenase fromSchizophyllum commune. A number of NADP-dependent dehydrogenases of animal origin were tested and all were completely insensitive to inhibition except for rat liver 6-phosphogluconate dehydrogenase, which was 10-fold less sensitive than theCryptococcal enzyme. The pattern of inhibition in all cases was linear competitive versus NADP. The inhibitor has been purified and identified as an ethylenesulfonic acid oligomer. This inhibitor holds promise as a model compound for the development of a specific antifungal agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号