全文获取类型
收费全文 | 106576篇 |
免费 | 6375篇 |
国内免费 | 4902篇 |
专业分类
117853篇 |
出版年
2023年 | 1441篇 |
2022年 | 2349篇 |
2021年 | 2903篇 |
2020年 | 2885篇 |
2019年 | 3295篇 |
2018年 | 3231篇 |
2017年 | 2515篇 |
2016年 | 2526篇 |
2015年 | 2985篇 |
2014年 | 5647篇 |
2013年 | 7996篇 |
2012年 | 4210篇 |
2011年 | 5805篇 |
2010年 | 4372篇 |
2009年 | 5230篇 |
2008年 | 5483篇 |
2007年 | 5526篇 |
2006年 | 4873篇 |
2005年 | 4453篇 |
2004年 | 3867篇 |
2003年 | 3404篇 |
2002年 | 3000篇 |
2001年 | 2176篇 |
2000年 | 1884篇 |
1999年 | 1871篇 |
1998年 | 1798篇 |
1997年 | 1623篇 |
1996年 | 1557篇 |
1995年 | 1443篇 |
1994年 | 1368篇 |
1993年 | 1264篇 |
1992年 | 1136篇 |
1991年 | 1028篇 |
1990年 | 885篇 |
1989年 | 824篇 |
1988年 | 763篇 |
1987年 | 749篇 |
1986年 | 588篇 |
1985年 | 978篇 |
1984年 | 1329篇 |
1983年 | 952篇 |
1982年 | 1068篇 |
1981年 | 829篇 |
1980年 | 754篇 |
1979年 | 657篇 |
1978年 | 449篇 |
1977年 | 401篇 |
1976年 | 333篇 |
1975年 | 275篇 |
1974年 | 271篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Mechkarska M Ojo OO Meetani MA Coquet L Jouenne T Abdel-Wahab YH Flatt PR King JD Conlon JM 《Peptides》2011,32(2):203-208
Using a combination of reversed-phase HPLC and electrospray mass spectrometry, peptidomic analysis of norepinephrine-stimulated skin secretions of the American bullfrog Lithobates catesbeianus Shaw, 1802 led to the identification and characterization of five newly described peptides (ranatuerin-1CBb, ranatuerin-2CBc, and -CBd, palustrin-2CBa, and temporin-CBf) together with seven peptides previously isolated on the basis of their antimicrobial activity (ranatuerin-1CBa, ranatuerin-2CBa, brevinin-1CBa, and -1CBb, temporin-CBa, -CBb, and -CBd). The abilities of the most abundant of the purified peptides to stimulate the release of insulin from the rat BRIN-BD11 clonal β cell line were evaluated. Ranatuerin-2CBd (GFLDIIKNLGKTFAGHMLDKIRCTIGTCPPSP) was the most potent peptide producing a significant stimulation of insulin release (119% of basal rate, P < 0.01) from BRIN-BD11 cells at a concentration of 30 nM, with a maximum response (236% of basal rate, P < 0.001) at a concentration of 3 μM. Ranatuerin-2CBd did not stimulate release of the cytosolic enzyme, lactate dehydrogenase at concentrations up to 3 μM, indicating that the integrity of the plasma membrane had been preserved. Brevinin-1CBb (FLPFIARLAAKVFPSIICSVTKKC) produced the maximum stimulation of insulin release (285% of basal rate, P < 0.001 at 3 μM) but the peptide was cytotoxic at this concentration. 相似文献
942.
Nina Kaludercic Andrea CarpiRoberta Menabò Fabio Di Lisa Nazareno Paolocci 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(7):1323-1332
Recent evidence highlights monoamine oxidases (MAO) as another prominent source of oxidative stress. MAO are a class of enzymes located in the outer mitochondrial membrane, deputed to the oxidative breakdown of key neurotransmitters such as norepinephrine, epinephrine and dopamine, and in the process generate H2O2. All these monoamines are endowed with potent modulatory effects on myocardial function. Thus, when the heart is subjected to chronic neuro-hormonal and/or peripheral hemodynamic stress, the abundance of circulating/tissue monoamines can make MAO-derived H2O2 production particularly prominent. This is the case of acute cardiac damage due to ischemia/reperfusion injury or, on a more chronic stand, of the transition from compensated hypertrophy to overt ventricular dilation/pump failure. Here, we will first briefly discuss mitochondrial status and contribution to acute and chronic cardiac disorders. We will illustrate possible mechanisms by which MAO activity affects cardiac biology and function, along with a discussion as to their role as a prominent source of reactive oxygen species. Finally, we will speculate on why MAO inhibition might have a therapeutic value for treating cardiac affections of ischemic and non-ischemic origin. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection. 相似文献
943.
Li C Wang X Wang G Wu C Li N 《Comparative biochemistry and physiology. Part D, Genomics & proteomics》2011,6(3):264-270
Roxarsone is a commonly used additive in chicken (Gallus gallus) industry. However, little is known on the intrinsic molecular mechanism via which the growth performance of birds improves. This study was therefore performed to investigate the expression profiles of genes induced by roxarsone. Fifty-six broiler chickens were divided into two groups, namely treated and untreated with roxarsone. The treated group was provided a diet of 45.4 mg/kg roxarsone medication and the other group acted as control. Data analysis showed that roxarsone consistently and significantly (P < 0.05) increased chicken growth performance. In addition to this a significant (P < 0.05) increase of arsenic residue in liver has been seen. Microarray expression analysis of 8935 genes in liver showed that 22 genes (10 up- and 12 down-regulated) had altered expression throughout the experimental periods. Two novel genes (GenBank accession no. GU724343 and GU724344) were cloned through rapid amplification of cDNA ends (RACE). Gene GU724343 was predicted to encode an unidentified protein and the second gene GU724344 was presumed to encode a new member of immunoglobulin-like receptor (CHIR) family. Our results suggested for the first time that the role of roxarsone could be mainly to modify the expression levels of cell growth, immunity/defense and energy metabolism associated genes, as a result promoting animal growth. Further research on these genes should help to increase the knowledge of improving animal productivity safely and effectively. 相似文献
944.
Contrasting nutrient–disease relationships: Potassium gradients in barley leaves have opposite effects on two fungal pathogens with different sensitivities to jasmonic acid 下载免费PDF全文
Tony R. Larson Ian A. Graham Philip J. White Adrian C. Newton Anna Amtmann 《Plant, cell & environment》2018,41(10):2357-2372
945.
946.
Dimethyl fumarate inhibits osteoclasts via attenuation of reactive oxygen species signalling by augmented antioxidation 下载免费PDF全文
947.
Caveolin‐1 down‐regulation is required for Wnt5a‐Frizzled 2 signalling in Ha‐RasV12‐induced cell transformation 下载免费PDF全文
Hsiu‐Kuan Lin Hsi‐Hui Lin Yu‐Wei Chiou Ching‐Lung Wu Wen‐Tai Chiu Ming‐Jer Tang 《Journal of cellular and molecular medicine》2018,22(5):2631-2643
Caveolin‐1 (Cav1) is down‐regulated during MK4 (MDCK cells harbouring inducible Ha‐RasV12 gene) transformation by Ha‐RasV12. Cav1 overexpression abrogates the Ha‐RasV12‐driven transformation of MK4 cells; however, the targeted down‐regulation of Cav1 is not sufficient to mimic this transformation. Cav1‐silenced cells, including MK4/shCav1 cells and MDCK/shCav1 cells, showed an increased cell area and discontinuous junction‐related proteins staining. Cellular and mechanical transformations were completed when MDCK/shCav1 cells were treated with medium conditioned by MK4 cells treated with IPTG (MK4+I‐CM) but not with medium conditioned by MK4 cells. Nanoparticle tracking analysis showed that Ha‐RasV12‐inducing MK4 cells increased exosome‐like microvesicles release compared with their normal counterparts. The cellular and mechanical transformation activities of MK4+I‐CM were abolished after heat treatment and exosome depletion and were copied by exosomes derived from MK4+I‐CM (MK4+I‐EXs). Wnt5a, a downstream product of Ha‐RasV12, was markedly secreted by MK4+I‐CM and MK4+I‐EXs. Suppression of Wnt5a expression and secretion using the porcupine inhibitor C59 or Wnt5a siRNA inhibited the Ha‐RasV12‐ and MK4+I‐CM‐induced transformation of MK4 cells and MDCK/shCav1 cells, respectively. Cav1 down‐regulation, either by Ha‐RasV12 or targeted shRNA, increased frizzled‐2 (Fzd2) protein levels without affecting its mRNA levels, suggesting a novel role of Cav1 in negatively regulating Fzd2 expression. Additionally, silencing Cav1 facilitated the internalization of MK4+I‐EXs in MDCK cells. These data suggest that Cav1‐dependent repression of Fzd2 and exosome uptake is potentially relevant to its antitransformation activity, which hinders the activation of Ha‐RasV12‐Wnt5a‐Stat3 pathway. Altogether, these results suggest that both decreasing Cav1 and increasing exosomal Wnt5a must be implemented during Ha‐RasV12‐driven cell transformation. 相似文献
948.
Cinzia Antognelli Rodolfo Cecchetti Francesca Riuzzi Matthew J. Peirce Vincenzo N. Talesa 《Journal of cellular and molecular medicine》2018,22(5):2865-2883
Metastasis is the primary cause of death in prostate cancer (PCa) patients. Effective therapeutic intervention in metastatic PCa is undermined by our poor understanding of its molecular aetiology. Defining the mechanisms underlying PCa metastasis may lead to insights into how to decrease morbidity and mortality in this disease. Glyoxalase 1 (Glo1) is the detoxification enzyme of methylglyoxal (MG), a potent precursor of advanced glycation end products (AGEs). Hydroimidazolone (MG‐H1) and argpyrimidine (AP) are AGEs originating from MG‐mediated post‐translational modification of proteins at arginine residues. AP is involved in the control of epithelial to mesenchymal transition (EMT), a crucial determinant of cancer metastasis and invasion, whose regulation mechanisms in malignant cells are still emerging. Here, we uncover a novel mechanism linking Glo1 to the maintenance of the metastatic phenotype of PCa cells by controlling EMT by engaging the tumour suppressor miR‐101, MG‐H1‐AP and TGF‐β1/Smad signalling. Moreover, circulating levels of Glo1, miR‐101, MG‐H1‐AP and TGF‐β1 in patients with metastatic compared with non‐metastatic PCa support our in vitro results, demonstrating their clinical relevance. We suggest that Glo1, together with miR‐101, might be potential therapeutic targets for metastatic PCa, possibly by metformin administration. 相似文献
949.
Eun Young Kim Naghmeh Hassanzadeh Khayyat Stuart E. Dryer 《生物化学与生物物理学报:疾病的分子基础》2018,1864(10):3527-3536
The soluble urokinase receptor (suPAR) has been implicated in the pathogenesis of chronic kidney diseases (CKD) and may function as a circulating “permeability factor” driving primary focal and segmental glomerulosclerosis (FSGS). Here we examined the mechanisms whereby suPAR causes mobilization and increased activation of Ca2+-permeable TRPC6 channels, which are also implicated in FSGS. Treatment of immortalized mouse podocytes with recombinant suPAR for 24?h caused a marked increase in cytosolic reactive oxygen species (ROS) that required signaling through integrins. This effect was associated with increased assembly of active cell surface NADPH oxidase 2 (Nox2) complexes and was blocked by the Nox2 inhibitor apoycynin. Treatment with suPAR also evoked a functionally measurable increase in TRPC6 channels that was blocked by concurrent treatment with the ROS-quencher TEMPOL as well as by inhibition of Rac1, an essential component of active Nox2 complexes. Elevated ROS evoked by exposing cells to suPAR or H2O2 caused a marked increase in the abundance of tyrosine-phosphorylated proteins including Src, and suPAR-evoked Src activation was blocked by TEMPOL. Moreover, mobilization and increased activation of TRPC6 by suPAR or H2O2 was blocked by concurrent exposure to PP2, an inhibitor of Src family tyrosine kinases. These data suggest that suPAR induces oxidative stress in podocytes that in turn drives signaling through Src family kinases to upregulate TRPC6 channels. The combination of oxidative stress and altered Ca2+ signaling may contribute to loss of podocytes and progression of various forms of CKD. 相似文献
950.