首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79317篇
  免费   5217篇
  国内免费   2763篇
  87297篇
  2024年   196篇
  2023年   1558篇
  2022年   2019篇
  2021年   2709篇
  2020年   2723篇
  2019年   3701篇
  2018年   3244篇
  2017年   2382篇
  2016年   2393篇
  2015年   2745篇
  2014年   5235篇
  2013年   6873篇
  2012年   3787篇
  2011年   4844篇
  2010年   3689篇
  2009年   4030篇
  2008年   4083篇
  2007年   4108篇
  2006年   3657篇
  2005年   3252篇
  2004年   2851篇
  2003年   2278篇
  2002年   2030篇
  2001年   1306篇
  2000年   1013篇
  1999年   1037篇
  1998年   1045篇
  1997年   820篇
  1996年   755篇
  1995年   671篇
  1994年   595篇
  1993年   472篇
  1992年   468篇
  1991年   381篇
  1990年   319篇
  1989年   258篇
  1988年   239篇
  1987年   201篇
  1986年   171篇
  1985年   302篇
  1984年   527篇
  1983年   368篇
  1982年   380篇
  1981年   289篇
  1980年   224篇
  1979年   218篇
  1978年   182篇
  1977年   165篇
  1976年   124篇
  1975年   115篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
A protein crystal lattice consists of surface contact regions, where the interactions of specific groups play a key role in stabilizing the regular arrangement of the protein molecules. In an attempt to control protein incorporation in a crystal lattice, a leucine zipper-like hydrophobic interface (comprising four leucine residues) was introduced into a helical region (helix 2) of the human pancreatic ribonuclease 1 (RNase 1) that was predicted to form a suitable crystallization interface. Although crystallization of wild-type RNase 1 has not yet been reported, the RNase 1 mutant having four leucines (4L-RNase 1) was successfully crystallized under several different conditions. The crystal structures were subsequently determined by X-ray crystallography by molecular replacement using the structure of bovine RNase A. The overall structure of 4L-RNase 1 is quite similar to that of the bovine RNase A, and the introduced leucine residues formed the designed crystal interface. To characterize the role of the introduced leucine residues in crystallization of RNase 1 further, the number of leucines was reduced to three or two (3L- and 2L-RNase 1, respectively). Both mutants crystallized and a similar hydrophobic interface as in 4L-RNase 1 was observed. A related approach to engineer crystal contacts at helix 3 of RNase 1 (N4L-RNase 1) was also evaluated. N4L-RNase 1 also successfully crystallized and formed the expected hydrophobic packing interface. These results suggest that appropriate introduction of a leucine zipper-like hydrophobic interface can promote intermolecular symmetry for more efficient protein crystallization in crystal lattice engineering efforts.  相似文献   
993.
Spinocerebellar ataxia type 1 (SCA1) is an inherited neurodegenerative disorder. The mutation causing SCA1 is an expansion in the polyglutamine tract of the ATXN1 protein. Previous work demonstrated that phosphorylation of mutant ATXN1 at serine 776 (S776), a putative Akt phosphorylation site, is critical for pathogenesis. To examine this pathway further, we utilized a cell-transfection system that allowed the targeting of Akt to either the cytoplasm or the nucleus. In contrast to HeLa cells, we found that Akt targeted to the cytoplasm increased the degradation of ATXN1 in Chinese hamster ovary cells. However, Akt targeted to the cytoplasm failed to destabilize ATXN1 if Hsp70/Hsc70 was present. Thus, Hsp70/Hsc70 can regulate ATXN1 levels in concert with phosphorylation of ATXN1 at S776.  相似文献   
994.
A new aminated carrier—magnetic nanogels covered by amino groups, was obtained by Hoffman degradation of polyacrylamide-coated Fe3O4 nanoparticles prepared by photochemical polymerization. α-Chymotrypsin (CT) was covalently bound to the magnetic nanogels by use of 1-ethyl-3-(3-dimethylaminepropyl) carbodiimide and N-hydroxysuccinimide at room temperature. Immobilization time, pH value of the reaction mixture and proportion of CT to the magnetic nanogels were investigated to obtain the optimum condition for CT immobilization. The maximal specific activity of the bound CT was determined to be 0.93 U/(mg min), 59.3% of free counterpart. The maximal binding capacity was measured to be 102 mg enzyme/g nanogel. Furthermore, the bound CT exhibited good thermal stability, storage stability and reusability.  相似文献   
995.
The CD155 ligand CD96 is an immunoglobulin-like protein tentatively allocated to the repertoire of human NK receptors. We report here that the CD96/CD155-interaction is preserved between man and mouse although both receptors are only moderately conserved in amino acid sequence. Moreover, murine CD96 (mCD96) binds to nectin-1, a receptor related to CD155. Applying newly generated monoclonal antibodies specifically recognizing mCD96, an expression profile is revealed resembling closely that of human CD96 (hCD96) on cells of hematopoietic origin. A panel of anti-mCD96 but also recently established anti-mCD155 antibodies effectively prevents formation of CD96/CD155-complexes. This was exploited to demonstrate that the only available receptor for mCD96 present on thymocytes is mCD155. Moreover, T cell adhesion to insect cells expressing mCD155 is blocked by these antibodies depending on the T cell subtype. These results suggest a function of the CD96/CD155-adhesion system in T cell biology.  相似文献   
996.
The synthesis of a series of andrographolide derivatives was described and their inhibitory effects on TNF-α and IL-6 secretion in mouse macrophages were also evaluated. Most of the tested compounds showed inhibitory effects, and the compounds with the structure of 12-hydroxy-14-dehydroandrographolide showed better inhibitory activity than the compounds with the structure of isoandrographolide.  相似文献   
997.
998.
999.
1000.
J. Wischhusen  F. Padilla 《IRBM》2019,40(1):10-15

Background

Ultrasound-targeted microbubble destruction (UTMD) is a type of ultrasound therapy, in which low frequency moderate power ultrasound is combined with microbubbles to trigger cavitation. Cavitation is the process of oscillation of gas bubbles causing biophysical effects such as pushing and pulling or shock waves that permeabilize biological barriers. In vivo, cavitation results in tissue permeabilization and is used to enable local delivery of nanomedicine. While cavitation can occur in biological liquids when high pressure ultrasound is applied, the use of microbubbles as cavitation nuclei in UTMD largely facilitates the induction of cavitation. UTMD is intensively studied for drug delivery into tumor tissue, but also for the activation of anti-tumor immune responses. The first clinical studies of UTMD-mediated chemotherapy delivery confirmed safety and efficacy of this approach.

Aim

The present review summarizes ultrasound settings, cavitation approaches, biophysical mechanisms of drug delivery, drug carriers, and pre-clinical and clinical applications of UTMD for drug delivery into tumors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号