首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44593篇
  免费   1294篇
  国内免费   1760篇
  2023年   328篇
  2022年   447篇
  2021年   522篇
  2020年   602篇
  2019年   1211篇
  2018年   744篇
  2017年   585篇
  2016年   625篇
  2015年   886篇
  2014年   1576篇
  2013年   2304篇
  2012年   1171篇
  2011年   1793篇
  2010年   1393篇
  2009年   1915篇
  2008年   1906篇
  2007年   2110篇
  2006年   1873篇
  2005年   1802篇
  2004年   1704篇
  2003年   1368篇
  2002年   1157篇
  2001年   936篇
  2000年   898篇
  1999年   916篇
  1998年   815篇
  1997年   755篇
  1996年   738篇
  1995年   922篇
  1994年   884篇
  1993年   864篇
  1992年   866篇
  1991年   756篇
  1990年   699篇
  1989年   677篇
  1988年   689篇
  1987年   680篇
  1986年   423篇
  1985年   607篇
  1984年   1016篇
  1983年   777篇
  1982年   1062篇
  1981年   715篇
  1980年   727篇
  1979年   710篇
  1978年   303篇
  1977年   291篇
  1976年   257篇
  1975年   195篇
  1974年   156篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
981.
Summary The localization of -amylase (EC 3.2.1.1) in barley (Hordeum vulgare L. cv Himalaya) aleurone protoplasts was studied using electron microscope immunocytochemistry. Antibodies were raised against total barley -amylase, i.e., -amylase containing both highisoelectric point (high-pI) and low-pI isoforms, as well as against purified high- and low-pI isoforms. All antibodies localized -amylase to the endoplasmic reticulum (ER) and Golgi apparatus (GApp) of the aleurone cell, and various controls showed that the labeling was specific for -amylase. Labeling of protein bodies and spherosomes, which are the most abundant organelles in this cell, was very low. There was no evidence that -amylase isoforms were differentially distributed within different compartments of the endomembrane system. Rather, both high- and low-pI isoforms showed the same pattern of distribution in ER and in the cis, medial, and transregions of the GApp. We conclude that in the Himalaya cultivar of barley, all isoforms of -amylase are transported to the plasma membrane via the GApp.Abbreviations ER endoplasmic reticulum - GA3 gibberellic acid - GApp Golgi apparatus - PBS phosphate buffered saline - PCR partially coated reticulum - PM plasma membrane - TBS Tris buffered saline - TGN trans-Golgi network  相似文献   
982.
Summary In tip-growingChara rhizoids, the in-vivo saltatory movements of Golgi vesicles were recorded. The movements in radial direction back and forth between the ER aggregate and the plasma membrane occurred three times more often than movements passing the ER aggregate tangentially. The mean velocity of the class of Golgi vesicles observed (0.4–1 m in diameter) was approx. 0.3 m/s. Higher speed of 1–1.5 m/s occurred only in radial directions. Possibly, the ER aggregate is involved in guidance of the Golgi vesicles.Abbreviations DIC differential interference contrast - ER endoplasmic reticulum - OsFeCN osmium tetroxide-potassium ferricyanide Dedicated to the memory of Professor O. Kiermayer  相似文献   
983.
We studied the effects of various polyamines on bud regeneration in thin-layer tissue explants of vegetative and floweringNicotiana tabacum L. cv. Wisconsin 38, in which application of exogenous spermidine (Spd) to vegetative cultures causes the initiation and development of some flower buds (Kaur-Sawhney et al. 1988 Planta173, 282). We now show that this effect is dependent on the time and duration of application, Spd being required from the start of the cultures for about three weeks. Neither putrescine nor spermine is effective in the concentration range tested. Spermidine cannot replace kinetin (N6-furfurylaminopurine) in cultures at the time of floral bud formation, but once the buds are initiated in the presence of kinetin, addition of Spd to the medium greatly increases the number of floral buds that develop into normal flowers. Addition of Spd to similar cultures derived from young, non-flowering plants did not cause the appearance of floral buds but rather induced a profusion of vegetative buds. These results indicate a morphogenetic role of Spd in bud differentiation. Dedicated to Professor Hans Mohr on the occasion of his 60th birthday  相似文献   
984.
λ-Glutamylcysteine synthetase activity (EC 6.3.2.2) was analysed in Sephacryl S-200 eluents of extracts from cell suspension cultures ofNicotiana tabacum L. cv. Samsun by determination of λ-glutamylcysteine as its monobromobimane derivative. The enzyme has a relative molecular mass (Mr) of 60000 and exhibits maximal activity at pH 8 (50% at pH 7.0 and pH9.0) and an absolute requirement for Mg2+. With 0.2mM Cd2+ or Zn2+, enzyme activity was reduced by 35% and 19%, respectively. Treatment with 5 mM dithioerythritol led to a heavy loss of activity and to dissociation into subunits (Mr 34000). Buthionine sulfoximine andl-methionine-sulfoximine, known as potent inhibitors of λ-glutamylcysteine synthetase from mammalian cells, were found to be effective inhibitors of the plant enzyme too. The apparent Km values forl-glutamate,l-cysteine, and α-aminobutyrate were, respectively, 10.4mM, 0.19 mM, and 6.36 mM. The enzyme was completely inhibited by glutathione (Ki=0.42 mM). The data indicate that the rate of glutathione synthesis in vivo may be influenced substantially by the concentration of cysteine and glutamate and may be further regulated by feedback inhibition of λ-glutamylcysteine synthetase by glutathione itself. λ-Glutamylcysteine synthetase is, like glutathione synthetase, localized in chloroplasts as well as in the cytoplasm. Chloroplasts fromPisum sativum L. isolated on a Percoll gradient contained about 72% of the λ-glutamylcysteine synthetase activity in leaf cells and 48% of the total glutathione synthetase activity. In chloroplasts ofSpinacia oleracea L. about 61% of the total λ-glutamylcysteine synthetase activity of the cells were found and 58% of the total glutathione synthetase activity. These results indicate that glutathione synthesis can take place in at least two compartments of the plant cell. Dedicated to Professor A. Prison on the occasion of his 80th birthday  相似文献   
985.
Nitrogen-starved sunflower plants (Helianthus annuus L. cv. Peredovic) cannot absorb NO 3 or NO 2 upon initial exposure to these anions. Ability of the plants to take up NO 3 and NO 2 at high rates from the beginning was induced by a pretreatment with NO 3 . Nitrite also acted as inducer of the NO 2 -uptake system. The presence of cycloheximide during NO 3 -pretreatment prevented the subsequent uptake of NO 3 and NO 2 , indicating that both uptake systems are synthesized de novo when plants are exposed to NO 3 . Cycloheximide also suppressed nitrate-reductase (EC 1.6.6.1) and nitrite-reductase (EC 1.7.7.1) activities in the roots. The sulfhydryl-group reagent N-ethylmaleimide greatly inhibited the uptake of NO 3 and NO 2 . Likewise, N-ethylmaleimide promoted in vivo the inactivation of nitrate reductase without affecting nitrite-reductase activity. Rates of NO 3 and NO 2 uptake as a function of external anion concentration exhibited saturation kinetics. The calculated Km values for NO 3 and NO 2 uptake were 45 and 23 M, respectively. Rates of NO 3 uptake were four to six times higher than NO 3 -reduction rates in roots. In contrast, NO 2 -uptake rates, found to be very similar to NO 3 -uptake rates, were much lower (about 30 times) than NO 2 -reduction rates. Removal of oxygen from the external solution drastically suppressed NO 3 and NO 2 uptake without affecting their reduction. Uptake and reduction were also differentially affected by pH. The results demonstrate that uptake of NO 3 and NO 2 into sunflower plants is mediated by energy-dependent inducible-transport systems distinguishable from the respective enzymatic reducing systems.Abbreviations CHI cycloheximide - NEM N-ethylmaleimide - NiR nitrite reductase - NR nitrate reductase - pHME p-hydroxymercuribenzoate This research was supported by grant PB86-0232 from the Dirección General de Investigatión Científica y Técnica (Spain). One of us (E.A.) thanks the Consejeria de Educación y Ciencia de la Junta de Andalucia for the tenure of a fellowship. We thank Miss G. Alcalá and Miss C. Santos for their valuable technical and secretarial assistance.  相似文献   
986.
Gisela Mäck  Rudolf Tischner 《Planta》1990,182(2):169-173
The pericarp of the dormant sugarbeet fruit acts as a storage reservoir for nitrate, ammonium and -amino-N. These N-reserves enable an autonomous development of the seedling for 8–10 d after imbibition. The nitrate content of the seed (1% of the whole fruit) probably induces nitrate-reductase activity in the embryo enclosed in the pericarp. Nitrate that leaks out of the pericarp is reabsorbed by the emerging radicle. Seedlings germinated from seeds (pericarp was removed) without external N-supply are able to take up nitrate immediately upon exposure via a low-capacity uptake system (vmax = 0.8 mol NO 3 - ·(g root FW)–1·h–1; Ks = 0.12 mM). We assume that this uptake system is induced by the seed nitrate (10 nmol/seed) during germination. Induction of a high-capacity nitrate-uptake system (vmax = 3.4 mol NO 3 - ·(g root FW)–1·h–1; Ks = 0.08 mM) by externally supplied nitrate occurs after a 20-min lag and requires protein synthesis. Seedlings germinated from whole fruits absorb nitrate via a highcapacity uptake mechanism induced by the pericarp nitrate (748 nmol/pericarp) during germination. The uptake rates of the high-capacity system depend only on the actual nitrate concentration of the uptake medium and not on prior nitrate pretreatments. Nitrate deprivation results in a decline of the nitrate-uptake capacity (t1/2 of vmax = 5 d) probably caused by the decay of carrier molecules. Small differences in Ks but significant differences in vmax indicate that the low- and high-capacity nitrate-uptake systems differ only in the number of identical carrier molecules.Abbreviations NR nitrate reductase - pFPA para-fluorophenylalanine This work was supported by a grant from Bundesministerium für Forschung und Technologie and by Kleinwanzlebener Saatzucht AG, Einbeck.  相似文献   
987.
Nodules of cowpea (Vigna unguiculata (L.) Walp. cv. Vita 3:Bradyrhizobium CB 756) from 28-d-old plants cultured for 23 d with their root systems maintained in O2 levels from 1 to 80% (v/v, in N2) in the external gas phase showed a range of structural changes which have been interpreted in relation to an over- or under-supply of O2. A response to the partial pressure of O2 in the gas phase (pO2) was noted with respect to nodule size, lenticel development, the relative distributions of cortical and infected central tissue, the differentiation of cortex, especially the inner cortex, the frequency and size of infected and uninfected interstitial cells, the volume of extracellular spaces both in cortex and infected tissue, and in the frequency of bacteroids. As a consequence of these changes the surface area of inner cortex relative to the nitrogenase-containing units of fixing tissue (infected cells or bacteroids) was increased by as much as 20-fold. Effectiveness of bacteroid functioning increased from 0.10 ± 0.02 · 10-9 μmol acetylene reduced per bacteroid in air-grown nodules to 0.9 ± 0.16 · 10-9 (same units) per bacteroid in those cultured in 1% O2. This work was supported by a grant from the Australian Research Council (to C.A.A.) and an Australian International Development Assistance Bureau postgraduate fellowship (to F.D.D.). The authors wish to thank Dr. W.F.C. Blumer for his considerable help with morphometric analysis, Dr. J. Kuo for guidance in the use of histological techniques, and to Dr. J.S. Pate for the suggestion that lenticel development might be quantified by surface staining of nodules.  相似文献   
988.
Phosphoenolpyruvate carboxylase (PEPCase; EC 4.1.1.31) activity was found to be modulated by light and darkness when measured in the presence of K+, which had been added to induce swelling of guard-cell protoplasts (GCPs) from Vicia faba L., whereas no modulation was detected in the absence of K+ (PEPcase activity remained constant at 1.5±0.15 pmol PEP metabolized · GCP–1 ·h–1; subsequently, pmol GCP–1 ·h–1 will be used). The activity of PEPCase increased by 100% (from 1.5 to 3 pmol·protoplast–1·h–1) in darkness and by 200% (from 1.7 to 5 pmol·protoplast–1· h–1) in light and oscillations in activity of these magnitudes were repeated at intervals of 2 min (dark) and 2.5 min (light) for a period of 10 min during K+-induced increase in the volume of GCPs. The oscillations were reflected in changes in malate-pool sizes determined in plastids, mitochondria and the supernatant fraction (consisting of the cytosol and the vacuole). Malate probably functioned as a mitochondrial substrate, thus supplying ATP for K+ uptake and the swelling of the protoplasts. On the basis of the present paper and previous results (H. Schnabl and B. Michalke 1988, Life Sci. Adv. Plant Physiol. 7, 203–207) involving adenine nucleotidepool sizes in fractionated GCPs, a model is proposed to explain the cause-effect relationship between K+, PEPCase, the cytosolic and mitochondrial malate levels and ATP levels during the K+-induced increase of GCP volume.Abbreviations GCP dtguard-cell protoplast - PEP phosphoenol-pyruvate - PEPCase PEP carboxylase The authors thank Professor Hermann Schnabl, University of Stuttgart (FRG), for his assistance in applying the graph theory analysis. This work was supported by Deutsche Forschungsgemeinschaft to H.S.  相似文献   
989.
990.
Spatiotemporal patterns of expression of the cell-surface arabinogalactan-protein epitope defined by monoclonal antibody JIM4 (J.P. Knox et al., 1989, Development 106, 47–56) have been characterized by indirect immunofluorescence during the process of somatic embryogenesis in Daucus carota L. The JIM 4 epitope (J4e) occurred on cells established in culture from hypocotyl explants which appeared to derive, at least in part, from the epidermal cells of the hypocotyl. Cultures maintained in the presence of 2,4-dichlorophenoxyacetic acid developed proembryogenic masses of which only infrequent cells at the surface expressed J4e. Sub-culture at a low cell density and withdrawl of the synthetic auxin resulted in an increase in J4e expression in most surface cells and most abundantly in surface layers of cells at the future shoot end of developing embryos. The transition to heart-shaped embryos occurred concurrently with the expression of J4e by groups of cells beneath the developing cotyledons, at the junction of the future root and shoot. At this stage, J4e was also expressed by a single well-defined layer of cells at the surface of the embryos. Advancement to the mature torpedo stage was accompanied by the expression of the epitope on cells forming two regions of the future stele and of cells associated with the cotyledonary provascular tissue characteristic of the carrot seedling. At this stage there was substantially less expression of the marker antigen by epidermal cells, although infrequent expression by isolated cells of the epidermis was maintained. The correlation of J4e expression with the development and distinction of plant tissue patterns during somatic embryogenesis indicates a role for plasma-membrane arabinogalactan proteins in these processes.Abbreviations AGP arabinogalactan protein - 2,4-D 2,4-di-chlorophenoxyacetic acid - J4e JIM 4 epitope - PEM proembryogenic mass We thank Andrew Davis for photographic assistance and Roger Pennell for useful discussions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号