首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7071篇
  免费   237篇
  国内免费   392篇
  2023年   79篇
  2022年   121篇
  2021年   131篇
  2020年   126篇
  2019年   156篇
  2018年   183篇
  2017年   145篇
  2016年   149篇
  2015年   151篇
  2014年   372篇
  2013年   556篇
  2012年   245篇
  2011年   321篇
  2010年   248篇
  2009年   362篇
  2008年   393篇
  2007年   415篇
  2006年   306篇
  2005年   302篇
  2004年   259篇
  2003年   229篇
  2002年   183篇
  2001年   138篇
  2000年   106篇
  1999年   110篇
  1998年   125篇
  1997年   98篇
  1996年   102篇
  1995年   108篇
  1994年   94篇
  1993年   91篇
  1992年   92篇
  1991年   86篇
  1990年   57篇
  1989年   78篇
  1988年   74篇
  1987年   59篇
  1986年   53篇
  1985年   81篇
  1984年   131篇
  1983年   72篇
  1982年   86篇
  1981年   65篇
  1980年   63篇
  1979年   64篇
  1978年   54篇
  1977年   49篇
  1976年   38篇
  1974年   25篇
  1973年   26篇
排序方式: 共有7700条查询结果,搜索用时 453 毫秒
131.
The hyperthermophilic archaeon Pyrococcus furiosus was grown on pyruvate as carbon and energy source. The enzymes involved in gluconeogenesis were investigated. The following findings indicate that glucose-6-phosphate formation from pyruvate involves phosphoenolpyruvate synthetase, enzymes of the Embden-Meyerhof pathway and fructose-1,6-bisphosphate phosphatase.Cell extracts of pyruvate-grown P.furiosus contained the following enzyme activities: phosphoenolpyruvate synthetase (0.025 U/mg, 50 °C), enolase (0.9 U/mg, 80 °C), phosphoglycerate mutase (0.13 U/mg, 55 °C), phosphoglycerate kinase (0.01 U/mg, 50 °C), glyceraldehyde-3-phosphate dehydrogenase reducing either NADP+ or NAD+ (NADP+: 0.019 U/mg, NAD+: 0.009 U/mg; 50 °C), triosephosphate isomerase (1.4 U/mg, 50 °C), fructose-1,6-bisphosphate aldolase (0.0045 U/mg, 55 °C), fructose-1,6-bisphosphate phosphatase (0.026 U/mg, 75 °C), and glucose-6-phosphate isomerase (0.22 U/mg, 50 °C). Kinetic properties (V max values and apparent K m values) of the enzymes indicate that they operate in the direction of sugar synthesis. The specific enzyme activities of phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase (NADP+-reducing) and fructose-1,6-bisphosphate phosphatase in pyruvate-grown P. furiosus were by a factor of 3, 10 and 4, respectively, higher as compared to maltose-grown cells suggesting that these enzymes are induced under conditions of gluconeogenesis. Furthermore, cell extracts contained ferredoxin: NADP+ oxidoreductase (0.023 U/mg, 60 °C); phosphoenolpyruvate carboxylase (0.018 U/mg, 50 °C) acts as an anaplerotic enzyme.Thus, in P. furiosus sugar formation from pyruvate involves reactions of the Embden-Meyerhof pathway, whereas sugar degradation to pyruvate proceeds via a modified non-phosphorylated Entner-Doudoroff pathway.  相似文献   
132.
In this study, samples of Wolbachia-infected Aedes aegypti mosquitoes were collected from Al-Safa district in Jeddah city, Saudi Arabia. The presence of Wolbachia bacteria in mosquitoes was confirmed by PCR technique and they were reared and propagated in the laboratory. Comparative studies were conducted between Wolbachia-infected A. Aegypti and the Wolbachia-uninfected laboratory strain in terms of their ability to withstand drought, resist two types of insecticides and the activities of pesticide detoxification enzymes. The Wolbachia-infected A. aegypti strain proved less able to withstand the drought period, as the egg-hatching rate of the Wolbachia-uninfected strain was greater than that of the Wolbachia-infected strain after one, two and three months of dry periods. Compared to the Wolbachia-uninfected strain, the Wolbachia-infected strain demonstrated a relatively greater resistance to tested pesticides, namely Baton 100EC and Fendure 25EC which may be attributed to the higher levels of the detoxification enzymes glutathione-S-transferase and catalase and the lower levels of esterase and acetylcholine esterase.  相似文献   
133.
Besford  R. T. 《Plant Ecology》1993,(1):441-448
The effects of prolonged CO2 enrichment of tomato plants on photosynthetic performance and Calvin cycle enzymes, including the amount and activity of ribulose-1,5-bisphosphate carboxylase (RuBPco), were determined. Also the light-saturated rate of photosynthesis (Pmax) of the 5th leaf throughout leaf development was predicted based on the amount and kinetics of RuBPco. With short-term CO2 enrichment, i.e. only during the photosynthesis measurements, Pmax of the young leaves did not increase while the leaves reaching full expansion more than doubled their net rate of CO2 fixation. However, with longer-term CO2 enrichment, i.e. growing the crop in high CO2, the plants did not maintain this photosynthetic gain. Compared with leaves of plants grown in normal ambient CO2 the high CO2-grown leaves, when almost fully expanded, contained only about half as much RuBPco protein and Pmax in 300 and 1000 vpm CO2 was similarly reduced.The loss of RuBPco protein may be a factor associated with the accelerated fall in Pmax since Pmax was close to that predicted from the amount and kinetics of RuBPco assuming RuBP saturation. Acclimation to high CO2 is fundamentally different from acclimation to high light. In contrast to acclimation to high light, acclimation to high CO2 does not usually involve an increase in photosynthetic machinery so the synthesis and maintenance costs (as indicated by the dark respiration rate) are generally lower.  相似文献   
134.
5-Aminolevulinate synthase is the first enzyme of the heme biosynthetic pathway in nonplant higher eukaryotes. Murine erythroid 5-aminolevulinate synthase has been purified to homogeneity from an Escherichia coli overproducing strain, and the catalytic and spectroscopic properties of this recombinant enzyme were compared with those from nonrecombinant sources (Ferreira, G.C. & Dailey, H.A., 1993, J. Biol. Chem. 268, 584-590). 5-Aminolevulinate synthase is a pyridoxal 5'-phosphate-dependent enzyme and is functional as a homodimer. The recombinant 5-aminolevulinate synthase holoenzyme was reduced with tritiated sodium borohydride and digested with trypsin. A single peptide contained the majority of the label. The tritiated peptide was isolated, and its amino acid sequence was determined; it corresponded to 15 amino acids around lysine 313, to which pyridoxal 5'-phosphate is bound. Significantly, the pyridoxyllysine peptide is conserved in all known cDNA-derived 5-aminolevulinate synthase sequences and is present in the C-terminal (catalytic) domain. Mutagenesis of the 5-aminolevulinate synthase residue, which is involved in the Schiff base linkage with pyridoxal 5'-phosphate, from lysine to alanine or histidine abolished enzyme activity in the expressed protein.  相似文献   
135.
Two-month old Wistar rats of both sexes received, as sole drinking liquid, an aqueous solution of ammonium metavanadate (AMV) at a concentration of 0.01 or 0.05 mg V cm–3 (0.2 or 1.0 mM) for a period of 4 weeks. It was calculated that the animals took up doses of 1.5 and 5–6 mg V kg body weight–1 24 h–1, respectively. Food and AMV solution consumption in the experimental groups was similar to food and water consumption in the control group. A statistically significant decrease of consumption of AMV solution at a concentration of 0.05 mg V cm–3 was noted only in males. Hematological examination demonstrated a decrease in the erythrocyte count, hemoglobin level and hematocrit index. This decrease in the erythrocyte count was associated with an increased percentage of reticulocytes in the peripheral blood of the animals drinking the solution with a higher vanadium content. Biochemical analyses demonstrated a decrease of l-ascorbic acid levels in the plasma and erythrocytes of animals drinking the AMV solutions. A distinct tendency for the malonyldialdehyde level to increase in the blood was also observed. Among the enzymes examined in the erythrocytes (catalase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase and -aminolevulinic acid dehydratase [ALA-D]) only ALA-D activity was depressed.  相似文献   
136.
塑料的大量生产和无节制的使用已造成严重的环境污染。为了减少塑料废物对环境的影响,近年来塑料酶法降解已成为国内外研究者关注的热点。例如,通过蛋白质工程策略提高塑料降解酶催化活性和热稳定性,进一步提高酶法降解的效率。另外,通过融合酶策略将塑料结合模块与塑料降解酶融合,也可以促进塑料降解。近期发表在期刊Chem Catalysis的一项研究表明,采用碳水化合物结合模块融合策略可以在低浓度(<10 wt%)的底物聚对苯二甲酸乙二醇酯[poly(ethylene terephthalate),PET]中提高塑料降解酶的活性。但是在高浓度底物(10 wt%−20 wt%)中,该策略无法提高PET的酶法降解。该项研究对于采用塑料结合模块促进酶法降解塑料具有重要的指导意义。  相似文献   
137.
BackgroundSchiff base metal complexes are considered promising chemotherapeutic agents due to their potential application in cancer therapy.MethodsThe current work sought to synthesize a brand-new Schiff base ligand obtained from 2-hydroxybenzohydrazide and (E)− 1-(2-(p-tolyl)hydrazono)propan-2-one with metal ions which included Pd(II) and Zn(II) ions. Elemental analyses, FT-IR, mass spectra, 1H NMR, UV-Vis spectrometer, and computational analysis characterized the compound's structure. In vitro, the breast cancer cell line (MCF-7) was tested for its sensitivity to Schiff base (HL) and its Pd(II) and Zn(II) complexes. The half-maximal inhibitory concentration IC50 of the compounds was determined and used to perform the comet assay, which was carried out to reveal the photo-induced DNA damaging ability of the compounds of individual cells. Moreover, the compounds' effects on antioxidant defense systems of enzymes in cells: superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities and oxidant Malondialdehyde (MDA) were examined in MCF-7 cells.ResultsThe Pd(II) complex displayed approximately the same IC50 as Cisplatin, while Zn(II) complex had better activity than Cisplatin with very low IC50, 1.40 μg/ml. Significant alterations in SOD, CAT, GPx, and MDA production were discovered, inducing oxidative stress, enlarging ROS production, and reducing the antioxidant amount. This change was approximately similar in most compounds. Consequently, it promoted apoptosis, particularly the Zn(II) complex, which demonstrated an improved impact because of its ability to influence the antioxidant defense systems of enzymes, mostly SOD and GPx, besides increasing MDA levels.ConclusionIt can be concluded that Zn(II) complex is the most effective anticancer drug since it induced a very similar genotoxic effect as Cisplatin and has a very low IC50 value.  相似文献   
138.
Nucleoside phosphorylases are important biocatalysts for the chemo-enzymatic synthesis of nucleosides and their analogs which are, among others, used for the treatment of viral infections or cancer. S-methyl-5′-thioadenosine phosphorylases (MTAP) are a group of nucleoside phosphorylases and the thermostable MTAP of Aeropyrum pernix (ApMTAP) was described to accept a wide range of modified nucleosides as substrates. Therefore, it is an interesting biocatalyst for the synthesis of nucleoside analogs for industrial and therapeutic applications. To date, thermostable nucleoside phosphorylases were produced in shake flask cultivations using complex media. The drawback of this approach is low volumetric protein yields which hamper the wide-spread application of the thermostable nucleoside phosphorylases in large scale. High cell density (HCD) cultivations allow the production of recombinant proteins with high volumetric yields, as final optical densities >100 can be achieved. Therefore, in this study, we developed a suitable protocol for HCD cultivations of ApMTAP. Initially, optimum expression conditions were determined in 24-well plates using a fed-batch medium. Subsequently, HCD cultivations were performed using E. coli BL21-Gold cells, by employing a glucose-limited fed-batch strategy. Comparing different growth rates in stirred-tank bioreactors, cultivations revealed that growth at maximum growth rates until induction resulted in the highest yields of ApMTAP. On a 500-mL scale, final cell dry weights of 87.1–90.1 g L−1 were observed together with an overproduction of ApMTAP in a 1.9%–3.8% ratio of total protein. Compared to initially applied shake flask cultivations with terrific broth (TB) medium the volumetric yield increased by a factor of 136. After the purification of ApMTAP via heat treatment and affinity chromatography, a purity of more than 90% was determined. Activity testing revealed specific activities in the range of 0.21 ± 0.11 (low growth rate) to 3.99 ± 1.02 U mg−1 (growth at maximum growth rate). Hence, growth at maximum growth rate led to both an increased expression of the target protein and an increased specific enzyme activity. This study paves the way towards the application of thermostable nucleoside phosphorylases in industrial applications due to an improved heterologous expression in Escherichia coli.  相似文献   
139.
We have used [2-13C]d-glucose and carbon-13 nuclear magnetic resonance (NMR) spectroscopy to investigate metabolic fluxes through the major pathways of glucose metabolism in intact human erythrocytes and to determine the interactions among these pathways under conditions that perturb metabolism. Using the method described, we have been able to measure fluxes through the pentose phosphate pathway, phosphofructokinase, the 2,3-diphosphoglycerate bypass, and phosphoglycerate kinase, as well as glucose uptake, concurrently and in a single experiment. We have measured these fluxes in normal human erythrocytes under the following conditions: (1) fully oxygenated; (2) treated with methylene blue; and (3) deoxygenated. This method makes it possible to monitor various metabolic effects of stresses in normal and pathological states. Not only has 13C-NMR spectroscopy proved to be a useful method for measuring in vivo flux through the pentose phosphate pathway, but it has also provided additional information about the cycling of metabolites through the non-oxidative portion of the pentose phosphate pathway. Our evidence from experiments with [1-13C]-, [2-13C]-, and [3-13C]d-glucoses indicates that there is an observable reverse flux of fructose 6-phosphate through the reactions catalyzed by transketolase and transaldolase, even in the presence of a net flux through the pentose phosphate pathway.  相似文献   
140.
Historically, it has been theorized that the oxidant sensitivity of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes arises as a direct consequence of an inability to maintain cellular gluthione (GSH) levels. This study alternatively hypothesizes that decreased NADPH concentration leads to impaired to catalase activity which, in turn, underlies the observed oxidant susceptibility. To investigate this hypothesis, normal and G6PD-deficient erythrocytes and hemolysates were challenged with a H2O2-generating agent. The results of this study demonstrated that catalase activity was severely impaired upon H2O2 challenge in the G6PD-deficient cell whiel only decrease was observed in normal cells. Supplmentation of either normal or G6PD-deficient hemolysates with purified NADPH was found to significantly (P < 0.001) inhibit catalase inactivation upon oxidant challenge while addition of NADP+ had no effect. Analysis of these results demonstrated direct correlation between NADPH concentration and catalase activity (r = 0.881) and an inverse correlation between catalase activity and erythrocyte oxidant sensitivity (r = 0.906). In contrast, no correlation was found to exist between glutathione concentration (r = 0.170) and oxidant sensitivity. Analysis of NADPH/NADPt ration in acatalasemic mouse erythrocytes demonstrated that NADPH maintenance alone was not sufficient to explain oxidant resistance, and that catalase activity was required. This study supports the hypothesis that impaired catalase activity underlies the enhanced oxidant sensitivity of G6PD-deficient erythrocytes and elucidates the importance of NADPH in the maintenance of normal catalase activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号