首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   294篇
  免费   0篇
  国内免费   2篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2014年   11篇
  2013年   23篇
  2012年   4篇
  2011年   7篇
  2009年   6篇
  2008年   8篇
  2007年   12篇
  2006年   7篇
  2005年   16篇
  2004年   13篇
  2003年   12篇
  2002年   8篇
  2001年   11篇
  2000年   5篇
  1999年   7篇
  1998年   11篇
  1997年   3篇
  1996年   9篇
  1995年   11篇
  1994年   14篇
  1993年   24篇
  1992年   14篇
  1991年   10篇
  1990年   11篇
  1989年   7篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   5篇
  1984年   5篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
排序方式: 共有296条查询结果,搜索用时 31 毫秒
71.
Hypocotyls from annatto seedlings, were inoculated with Agrobacterium tumefaciens harboring a binary vector, pBI.121 or pCAMBIA2301, containing the -glucuronidase (gus) gene. Histochemical GUS assay of infected hypocotyls from two annatto varieties showed transient gus gene expression between 3 and 12 days after inoculation.These authors contributed equally to this work.)  相似文献   
72.
Embryogenic cultures from immature zygotic embryos of Pinus radiata seeds were established on semisolid proliferation medium with 2,4-D and BAP. Growing embryogenic masses containing embryonal cells and suspensor cells were subcultured on this media every 2 weeks. After 10 weeks, embryogenic masses (1.5 cm diameter) were transferred to a maturation medium containing ABA. Fully developed somatic embryos were obtained in this medium after 12 weeks. Embryogenic masses were genetically transformed using Agrobacterium tumefaciens. The pBI121 vector containing -glucuronidase (uidA) and the neomycin phosphotransferase (nptll) genes was introduced into this tissue. After co-cultivation with Agrobacterium, the embryogenic tissues were transferred to a selection media containing geneticin and carbenicillin. After 1 month of selection, histochemical assays showed extensive GUS positive activity zones in the transformed embryogenic tissues. Under light microscope, blue crystals were seen inside the embryogenic and suspensor cells, and also completely blue somatic embryos were obtained. The uidA gene was also detected by PCR analysis in genomic DNA isolated from transformed embryogenic tissues. These results indicate stable transformation of P. radiata somatic embryogenic tissues using Agrobacterium-mediated transformation.  相似文献   
73.
74.
The conditioning of apple shoots for several days in an appropriate liquid medium enhances the regenerative capacity of leaf explants derived from the shoots, so that adventitious buds form in high frequency. The use of conditioning enables the transformation and rapid recovery of plants from otherwise recalcitrant cultivars without the need for an extended callus phase. Conditioning has a wide range of effects on the leaf cells, including increasing the density of the cytoplasm and the complexity of vacuoles, and increasing the porosity of the cell walls from of the order of 3.5 nm to 5.5 nm. The increased porosity may aid the insertion of T-DNA through the cell wall. Initial expression of introduced genes, as judged by the histochemical assay of the β-glucuronidase gene, occurs within 2 days of inoculation with Agrobacterium, usually in groups of 2–20 cells, termed foci. The foci are most commonly composed of an intensely expressing core cell with one or more surrounding layers of less intensely expressing cells. Explants from conditioned leaves contain at least three times as many foci as the control explants. It is concluded that conditioning of apple shoots promotes the recovery of transformed plants from leaf explants by two processes: increasing the number of cells containing and expressing the introduced genes, and by increasing the probability that cells will regenerate directly to shoots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
75.
The involvement of calcium and different calmodulin isoforms (Ca2+-CaM) in heat shock (HS) signal transduction in Arabidopsis ( Arabidopsis thaliana ) was investigated. Using transgenic Arabidopsis plants which have the AtHsp18.2 promoter/GUS fusion gene, it was found that the level of β -glucuronidase (GUS) activity was up-regulated by the addition of CaCl2 and down-regulated by the calcium ion chelator EGTA, the calcium ion channel blockers LaCl3 and verapamil, or the CaM antagonists N -(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W7), chlorpromazine (CPZ) and trifluoperazine (TFP). CaCl2 not only increased the GUS activity after HS, but also up-regulated the GUS activity under non-HS conditions. These results provide additional support for the involvement of the Ca2+-CaM signalling system in HSP gene expression. The expression of nine CaM genes (AtCaM1–9) from Arabidopsis was differentially regulated by HS at 37 °C. The expression of AtCaM3 and AtCaM7 genes increased during HS. The temporal expression of the AtCaM3, AtCaM7 and hsp18.2 genes demonstrated that up-regulation of AtCaM3 expression occurred earlier than that of AtCaM7 or hsp18.2 .  相似文献   
76.
We have generated transgenic maize seed containing -glucuronidase(GUS) for commercial production. While many other investigators have demonstrated the expression of GUS as a scoreable marker, this is one of the first cases where a detailed characterization of the transgenic plants and the protein were performed which are necessary to use this as a commercial source of GUS. The recombinant -glucuronidase was expressed at levels up to 0.7% of water-soluble protein from populations of dry seed, representing one of the highest levels of heterologous proteins reported for maize. Southern blot analysis revealed that one copy of the gene was present in the transformant with the highest level of expression. In seeds, the majority of recombinant protein was present in the embryo, and subcellular localization indicated that the protein was dispersed throughout the cytoplasm. The purified recombinant -glucuronidase (GUS) was compared to native -glucuronidase using SDS-PAGE and western blot analysis. The molecular mass of both the recombinant and native enzymes was 68 000 Da. N-terminal amino acid sequence of the recombinant protein was similar to the sequence predicted from the cloned Escherichia coli gene except that the initial methionine was cleaved from the recombinant GUS. The recombinant and native GUS proteins had isoelectric points (pI) from 4.8 to 5.0. The purified proteins were stable for 30 min at 25, 37, and 50 ° C. Kinetic analysis of the recombinant and native GUS enzymes using 4-methylumbelliferyl glucuronide (MUG) as the substrate was performed. Scatchard analysis of these data demonstrated that the recombinant enzyme had a Km of 0.20 mM and a Vmax of 0.29 mM MUG per hour, and the native enzyme had a Km and Vmax of 0.21 mM and 0.22 mM/h respectively. Using D-saccharic acid 1,4-lactone, which is an inhibitor of -glucuronidase, the Ki of the native and recombinant enzymes was determined to be 0.13 mM. Thus, these data demonstrate that recombinant GUS is functionally equivalent to native GUS. We have demonstrated the expression of high levels of GUS can be maintained in stable germlines and have used an efficient recovery system where the final protein product, GUS, has been successfully purified. We describe one of the first model systems for the commercial production of a foreign protein which relies on plants as the bioreactor.  相似文献   
77.
78.
Efficient and sensitive assay for T-DNA-dependent transient gene expression   总被引:11,自引:2,他引:9  
We describe here a very sensitive and reproducible method to detect the efficiency ofAgrobacterium-mediated T-DNA transfer. This method is based on a quantitative assay of β-glucuronidase activity produced in the plant cell upon transfer of T-DNA carrying a specialuidA gene construct. Analysis of the transfer efficiency of a transfer-proficient bacterium compared with that of the same bacterium diluted at different ratios with a transfer-defective bacterium shows a high sensitivity of the β-glucuronidase activity in the plant. Five orders of magnitude in T-DNA transfer efficiency can be covered when the activity is measured combining the fluorimetric MUG assay (for high activity) and the histochemical X-Gluc assay (very sensitive for low activity).  相似文献   
79.
In Arabidopsis tissues, the pool of tubulin protein is provided by the expression of multiple -tubulin and -tubulin genes. Previous evidence suggested that the TUA2 -tubulin gene was expressed in all organs of mature plants. We now report a more detailed analysis of TUA2 expression during plant development. Chimeric genes containing TUA2 5-flanking DNA fused to the -glucuronidase (GUS) coding region were used to create transgenic Arabidopsis plants. Second-generation progeny of regenerated plants were analyzed by histochemical assay to localize GUS expression. GUS activity was seen throughout plant development and in nearly all tissues. The blue product of GUS activity accumulated to the highest levels in tissues with actively dividing and elongating cells. GUS activity was not detected in a few plant tissues, suggesting that, though widely expressed, the TUA2 promoter is not constitutively active.  相似文献   
80.
A reproducible and efficient transformation system has been developed for maize that is based on direct DNA uptake into embryogenic protoplasts and regeneration of fertile plants from protoplast-derived transgenic callus tissues. Plasmid DNA, containing the -glucuronidase (GUS) gene, under the control of the doubled enhancer element (the –208 to –46 bp upstream fragment) from CaMV 35S promoter, linked to the truncated (up to –389 bp from ATG) promoter of wheat, -amylase gene was introduced into protoplasts from suspension culture of HE/89 genotype. The constructed transformation vectors carried either the neomycin phosphotransferase (NPTII) or phosphinothricin acetyltransferase (PAT) gene as selective marker. The applied DNA uptake protocol has resulted at least in 10–20 resistant calli, or GUS-expressing colonies after treatment of 106 protoplasts. Vital GUS staining of microcalli has made possible the shoot regeneration from the GUS-stained tissues. 80–90% of kanamycin or PPT resistant calli showed GUS activity, and transgenic plants were regenerated from more than 140 clones. Both Southern hybridization and PCR analysis showed the presence of introduced foreign genes in the genomic DNA of the transformants. The chimeric promoter, composed of a tissue specific monocot promoter, and the viral enhancer element specified similar expression pattern in maize plants, as it was determined by the full CaMV 35S promoter in dicot and other monocot plants. The highest GUS specific activity was found in older leaves with progressively less activity in young leaves, stem and root. Histochemical localization of GUS revealed promoter function in leaf epidermis, mesophyll and vascular bundles, in the cortex and vascular cylinder of the root. In roots, the meristematic tip region and vascular tissues stained intensively. Selected transformants were grown up to maturity, and second-generation seedlings with segregation for GUS activity were obtained after outcrossing. The GUS-expressing segregants carried also the NPTII gene as shown by Southern hybridization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号