首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   2篇
  国内免费   2篇
  53篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2014年   2篇
  2013年   8篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  1999年   1篇
  1994年   1篇
  1985年   1篇
排序方式: 共有53条查询结果,搜索用时 0 毫秒
31.
32.
Peptide II, which is encoded on a gene for a precursor protein in abdominal ganglion neurons R3-R14, was purified from extracts of abdominal ganglia of Aplysia californica. Native peptide II comigrates with synthetic standards on HPLC under isocratic conditions. Amino acid sequence and composition analyses indicate that the sequence of peptide II is Glu-Ala-Glu-Glu-Pro-Ser-Phe-Met-Thr-Arg-Leu, as predicted from the precursor. The molluscan cardioexcitatory peptide Phe-Met-Arg-Phe-amide was also identified in abdominal ganglion extracts by similar means. The large amount of peptide II recovered (100 ng/ganglion), and its location on the precursor between two pairs of basic residues, strongly suggest that the precursor is processed into peptide II and at least two other peptides. Although cells R3-R14 have been postulated to play a role in cardiovascular control, peptide II was without effect at ≤10−4 M concentrations on identified abdominal ganglion neurons, the gastroesophageal artery or the heart. The physiological role of peptide II therefore remains to be elucidated.  相似文献   
33.
In the frog embryo, a sub-population of trunk neural crest (NC) cells undergoes a dorsal route of migration to contribute to the mesenchyme in the core of the dorsal fin. Here we show that a second population of cells, originally located in the dorsomedial region of the somite, also contributes to the fin mesenchyme. We find that the frog orthologue of Wnt11 (Wnt11-R) is expressed in both the NC and somite cell populations that migrate into the fin matrix. Wnt11-R is expressed prior to migration and persists in the mesenchymal cells after they have distributed throughout the fin. Loss of function studies demonstrate that Wnt11-R activity is required for an epithelial to mesenchymal transformation (EMT) event that precedes migration of cells into the fin matrix. In Wnt11-R depleted embryos, the absence of fin core cells leads to defective dorsal fin development and to collapse of the fin structure. Experiments using small molecule inhibitors indicate that dorsal migration of fin core cells depends on calcium signaling through calcium/calmodulin-dependent kinase II (CaMKII). In Wnt11-R depleted embryos, normal migration of NC cells and dorsal somite cells into the fin and normal fin development can be rescued by stimulation of calcium release. These studies are consistent with a model in which Wnt11-R signaling, via a downstream calcium pathway, regulates fin cell migration and, more generally, indicates a role for non-canonical Wnt signaling in regulation of EMT.  相似文献   
34.
In the present study, a patient-derived orthotopic xenograft (PDOX) model of recurrent cisplatinum (CDDP)-resistant metastatic osteosarcoma was treated with Salmonella typhimurium A1-R (S. typhimurium A1-R), which decoys chemoresistant quiescent cancer cells to cycle, and recombinant methioninase (rMETase), which selectively traps cancer cells in late S/G2, and chemotherapy. The PDOX models were randomized into the following groups 14 days after implantation: G1, control without treatment; G2, CDDP (6 mg/kg, intraperitoneal (i.p.) injection, weekly, for 2 weeks); G3, rMETase (100 unit/mouse, i.p., daily, for 2 weeks). G4, S. typhimurium A1-R (5 × 107 CFU/100 μl, i.v., weekly, for 2 weeks); G5, S. typhimurium A1-R (5 × 107 CFU/100 μl, i.v., weekly, for 2 weeks) combined with rMETase (100 unit/mouse, i.p., daily, for 2 weeks); G6, S. typhimurium A1-R (5 × 107 CFU/100 μl, i.v., weekly, for 2 weeks) combined with rMETase (100 unit/mouse, i.p., daily, for 2 weeks) and CDDP (6 mg/kg, i.p. injection, weekly, for 2 weeks). On day 14 after initiation, all treatments except CDDP alone, significantly inhibited tumor growth compared to untreated control: (CDDP: p = 0.586; rMETase: p = 0.002; S. typhimurium A1-R: p = 0.002; S. typhimurium A1-R combined with rMETase: p = 0.0004; rMETase combined with both S. typhimurium A1-R and CDDP: p = 0.0001). The decoy, trap and kill combination of S. typhimurium A1-R, rMETase and CDDP was the most effective of all therapies and was able to eradicate the metastatic osteosarcoma PDOX.  相似文献   
35.
36.
Circulating levels of endothelin (ET)-1 are increased in the diabetic state, as is endogenous ET(A)-receptor-mediated vasoconstriction. However, the responsible mechanisms remain unknown. We hypothesized that ET-1-induced vasoconstriction is augmented in type 2 diabetes with hyperglycemia through an increment in advanced glycation end-products (AGEs). So, we investigated whether treatment with aminoguanidine (AG), an inhibitor of AGEs, would normalize the ET-1-induced contraction induced by ET-1 in strips of thoracic aortas isolated from OLETF rats at the chronic stage of diabetes. In such aortas (vs. those from age-matched genetic control LETO rats): (1) the ET-1-induced contraction was enhanced, (2) the levels of HIF1α/ECE1/plasma ET-1 and plasma CML-AGEs were increased, (3) the ET-1-stimulated ERK phosphorylation mediated by ET(A)-R was increased, (4) the expression level of Jab1-modified ET(A)-R protein was reduced, and (5) the expression level of O-GlcNAcylated ET(A)-R protein was increased. Aortas isolated from such OLETF rats that had been treated with AG (50mg/kg/day for 10 weeks) exhibited reduced ET-1-induced contraction, suppressed ET-1-stimulated ERK phosphorylation accompanied by down-regulation of ET(A)-R, and increased modification of ET(A)-R by Jab1. Such AG-treated rats exhibited normalized plasma ET-1 and CML-AGE levels, and their aortas exhibited decreased HIF1α/ECE1 expression. However, such AG treatment did not alter the elevated levels of plasma glucose or insulin, or systolic blood pressure seen in OLETF rats. These data from the OLETF model suggest that within the timescale studied here, AG normalizes ET-1-induced aortic contraction by suppressing ET(A)-R/ERK activities and/or by normalizing the imbalance between Jab1 and O-GlcNAc in type 2 diabetes.  相似文献   
37.
The subcellular localisation of doxorubicin and Victoria Blue BO (VBBO) in a murine mammary tumour cell line EMT6-S, and the resistant sub-lineEMT6-R was studied, using confocal microscopy, in order to investigate their sites of action. In cells treated with doxorubicin (10 μ M) for 90 min, the pattern of intracellular drug distribution differed between the two cell lines. Doxorubicin was found to localise mainly in the nucleus of the sensitive cell line, whereas weak fluorescence was observed in the cytoplasm of the resistant cells, in a punctuate pattern, with no nuclear involvement. The drug also appeared to be effluxed more rapidly by the resistant cell line. The accumulation of doxorubicin at various time intervals over 1h in EMT6-S cells showed that the drug clearly interacted with both the plasma membrane and the nucleus. In contrast to doxorubicin, the intracellular distribution of VBBO in both EMT6-S and EMT6-R was similar, VBBO was clearly localised throughout the cytoplasm, in a punctuate pattern, which may be consistent with the widespread distribution of mitochondria. A more apical pattern of accumulation was noted in the EMT6-R cell line. No interaction with the plasma membrane was evident. These results indicate that the main modes of action for the two drugs differ markedly, suggesting involvement of both the membrane and the nucleus in the case of doxorubicin, but mitochondrial involvement for VBBO. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
38.
39.
Summary 1. Antisense oligodeoxynucleotides (ODNs) internally labeled with biotin or digoxigenin were injected into the lateral ventricle of rats and the distribution of the labeled ODNs was examined at several timepoints following the intracerebroventricular (icv) injections. The stability of these injected antisense ODNs, which had no backbone modifications, was also studied by performing recovery experiments.2. The most intense labeling was observed near the injection site, in periventricular areas, and in perivascular regions. Many of the labeled cells appeared to be neurons, and both the cytoplasm and the nuclei were stained. The labeled cells were detected 15 min after icv injection, demonstrating that the antisense ODNs were taken up rapidly by cells in the parenchyma. The digoxigeninated antisense ODNs were presented in both the cytoplasmic and the nuclear fractions of rat brain extracts, however, the levels appeared to be much lower in the nuclear fractions.3. Antisense ODNs injected into the lateral ventricle seemed to follow the bulk flow of cerebrospinal fluid (CSF), i.e., from the injection site in the lateral ventricle, through the ventricular system, to the subarachnoid spaces and the perivascular spaces. From the ventricular and perivascular spaces, the antisense ODNs diffused into the extracellular space and were taken up by cells. The full-length digoxigeninated antisense ODNs were detectable within cells after only 15 min, indicating their rapid uptake. In addition, the antisense ODNs appeared to be relatively stable in the brain since the full-length digoxigeninated ODNs were still detectable after 4 hr.  相似文献   
40.
The aggregation behavior of an amphiphilic supramolecular system, with potential application as a tumor-specific magnetic resonance imaging contrast agent, has been studied in detail by dynamic light scattering, small-angle neutron scattering and cryotransmission electron microscopy. The system was constituted of mixed aggregates formed by an anionic unimer containing the DTPAGlu, a chelating agent for the paramagnetic Gd(3+) ion, and an uncharged unimer containing the bioactive peptide CCK8, capable of directing the assembly toward tumor cells. Mixed aggregates formed by both unimers, and in the case of the DTPAGlu unimer with the chelating agent as free base or as Gd(3+) complex, have been investigated. A number of interesting features of the aggregation behavior were revealed: at physiological pH, micelles and bilayer structures were present, whereas upon decreasing solution pH or increasing ionic strength, the formation of bilayer structures was favored. On the basis of the above observations, the aggregating mechanism has been elucidated by considering the screening effect on intra- and interaggregate electrostatic repulsions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号