首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   32篇
  国内免费   183篇
  2024年   4篇
  2023年   6篇
  2022年   12篇
  2021年   11篇
  2020年   9篇
  2019年   9篇
  2018年   16篇
  2017年   8篇
  2016年   13篇
  2015年   20篇
  2014年   9篇
  2013年   9篇
  2012年   13篇
  2011年   14篇
  2010年   9篇
  2009年   8篇
  2008年   11篇
  2007年   16篇
  2006年   10篇
  2005年   8篇
  2004年   11篇
  2003年   7篇
  2002年   7篇
  2001年   10篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
排序方式: 共有275条查询结果,搜索用时 15 毫秒
181.
云杉次生林是关帝山的优势森林植被类型,也是华北亚高山地区寒温性常绿针叶林的代表类型.为更好地了解其物种组成、群落结构等基本特征及其潜在的生态学过程和机制,于2010年在关帝山庞泉沟国家自然保护区建立了4 hm2的云杉次生林固定监测样地(GDS样地).本文以第一次本底调查数据为基础,分析了样地树种组成、结构和空间分布.结果表明: 样地共有木本植物30种,隶属于11科22属.包括分枝的总个体数为26218(其中独立个体数为10266).植物区系组成属北温带成分;不同树种个体数、平均胸径和胸高断面积差异较大,导致群落成层分明,各层优势种明显.乔木层第一亚层树种径级结构呈双峰偏正态分布,乔木层第二亚层树种径级呈近似正态分布,灌木层树种径级呈“L”型分布.乔木优势树种青杄和华北落叶松的空间分布无论在个体数量还是聚集程度上均随径级变化而呈现不同的格局特征.相同径级的两树种,胸径(DBH)≥30 cm的华北落叶松在样地居多且聚集分布于样地中部,而DBH≥30 cm的青杄则相对较少,没有表现出空间聚集性.DBH≤10 cm的华北落叶松个体很少且散生于样地,而DBH≤10 cm的青杄大量聚集于样地中部.DBH≤10 cm的青杄在样地偏西北区域也有大量分布,而DBH≤10 cm的红桦主要分布于样地偏东南区域.灰栒子、土庄绣线菊和四川忍冬等灌木树种也表现出一定的异质性空间分布特征.树种分布格局受生境条件影响,同时与自身发育规律、更新特征及生态习性等相关.  相似文献   
182.
破碎化次生林斑块面积及斑块隔离对大山雀繁殖成功的影响   总被引:11,自引:1,他引:10  
研究了破碎化山地次生林中斑块面积及斑块隔离度对大山雀(Parus major)繁殖成功的影响,运用GPS定位系统确定了18块大,中,小3种类型的斑块及对照样点,观测了大山雀产第一枚卵时间,窝卵数,平均卵重,出雏量及雏鸟出飞量等生态指标,结果表明,斑块隔离度对大山雀繁殖成功没有影响,1999-2000年两年中,大山雀在连续分布次生林中的产卵时间平均早于各斑块中的产卵时间7.2d,各斑块间的产卵时间差异较小,连续分布次生林和较大面积斑块内的大山雀窝卵数略高于中,小面积斑块内的窝卵数,连续分布生林中的平均卵重最大,斑块面积对出雏量及雏鸟不量没有影响,中,小面积斑块内的巢损失率较高,最主要的原因是巢址竞争较激烈。  相似文献   
183.
酶在土壤有机质分解中起重要作用。为深入了解全球变化背景下森林凋落物产量的改变对森林生态系统过程的影响, 以亚热带米槠(Castanopsis carlesii)人促更新次生林(米槠人促林)和米槠次生林为研究对象, 设置凋落物加倍(DL)、凋落物去除(NL)和对照(CT) 3种处理, 探讨土壤6种胞外酶活性的变化。研究结果表明: 米槠次生林中土壤纤维素水解酶(CBH)、β-N-乙酰氨基葡萄糖苷酶(NAG)、酚氧化酶(PhOx)和过氧化酶(PerOx)活性高于米槠人促林, 而酸性磷酸酶(AP)和β-葡萄糖苷酶(βG)活性没有差异; NL和DL处理均降低了两种不同更新方式森林土壤的AP、βG和NAG活性, CBH和PerOx活性均无显著变化, 而PhOx活性仅在DL处理后降低; 除NAG活性外, 米槠人促林的AP、βG、PhOx活性在凋落物处理后下降的幅度均高于次生林; Pearson相关分析和冗余分析表明, 土壤酶活性与土壤含水量、碳(C)、氮(N)含量和微生物生物量碳(MBC)、氮(MBN)含量显著相关。因此, 凋落物输入的改变(无论增加和减少), 引起了土壤含水量、C、N以及MBC和MBN含量的下降, 进而可能会导致亚热带米槠次生林和米槠人促林土壤某些胞外酶(如AP、βG和NAG)活性降低。从土壤酶活性角度看, 米槠次生林比米槠人促林更有利于亚热带森林生态系统C、N养分循环。  相似文献   
184.
以红椿近成熟天然次生林林木直径的偏度、峰度为指标, 研究林木直径分布特征; 运用 Gamma、Logistic、Normal、Lognormal 和 Weibull 分布概率函数对红椿近成熟天然次生林直径分布进行拟合, χ2检验拟合效果, 筛选最优分布函数, 将林分特征与最优拟合函数参数回归, 获得预测拟合函数参数并建立预测函数。结果表明: (1) 红椿全部林分偏度 SK>0, 平均峰度 KT<0, 植株在 8—16 cm 径级阶段损失较大, 林分直径分布主要为左偏山状曲线, 即反“J”型曲线, 且曲线较为平坦; (2) Weibull 分布函数和 Logistic 分布函数为最优直径分布函数, 接受率均为 90.0%; (3)方差膨胀因子为 6.002E(R2=0.844), 形状参数 cE(R2=0.6...  相似文献   
185.
小陇山不同林龄锐齿栎林土壤有机碳和全氮积累特征   总被引:3,自引:0,他引:3  
侯浩  张宋智  关晋宏  杜盛 《生态学报》2016,36(24):8025-8033
以甘肃小陇山林区3个林龄阶段(中龄林、近熟林和成熟林)的锐齿栎(Quercus aliena var.acuteserrata)天然次生林为对象,研究了土壤中有机碳和全氮的垂直分布及其积累特征。结果表明:林地土壤有机碳和全氮含量在各龄级土壤剖面中的垂直变化规律一致,表层土壤中含量最高,随着土层深度逐渐降低。1 m土层范围有机碳和全氮密度随着林龄的增加而增加,中龄林、近熟林和成熟林的碳密度分别为122.92、242.21t/hm~2和280.53 t/hm~2,龄组之间差异显著(P0.05);3个林龄阶段的土壤全氮密度分别为10.37、18.94t/hm~2和24.76 t/hm~2,差异显著(P0.05)。有机碳和全氮密度在0—20 cm土层中占有很高比重,达37%—56%。土壤有机碳与全氮含量呈极显著的线性正相关(P0.0001)。土壤有机碳和全氮积累速率随林龄阶段存在差异,在生长旺盛期(中龄林-近熟林)的土壤有机碳(10.84 t hm~(-2)a~(-1))和全氮(0.78 t hm~(-)2a~(-1))的积累速率要大于成熟期(近熟林-成熟林)的土壤有机碳(1.92 t hm~(-2)a~(-1))和全氮(0.29 t hm~(-2)a~(-1))积累速率。  相似文献   
186.
抚育间伐对蒙古栎次生林生长的影响   总被引:7,自引:0,他引:7  
科学合理的抚育间伐措施是实现天然次生林稳定、高效、可持续经营的必然要求。以辽宁白石砬子国家级自然保护区萌生蒙古栎次生林为研究对象,设置幼龄林(15年生)和中龄林(35年生)两组抚育间伐试验区,利用两组试验区伐后8a和26a的长期连续测定数据,比较分析了不同抚育间伐强度对林分生长及结构的影响。结果表明,蒙古栎次生林幼龄林阶段经轻度、中度、强度间伐8a后,林分平均胸径及定期生长量与对照相比均有极显著差异,平均胸径分别比对照高2.1、1.3和2 cm;不同间伐强度对林分蓄积增长量影响不大,轻度、中度和强度间伐12 cm以上径阶蓄积定期生长量累计分别是对照的0.97、1.03和1.21倍。中龄林阶段,轻度、中度、强度间伐26a后林分平均胸径分别比对照高0.3、1.7和5.1 cm,强度间伐能显著提高林分平均胸径生长量;间伐能显著提高林分蓄积定期生长量累计及定期生长量,轻度、中度和强度间伐12 cm以上径阶蓄积定期生长量累计分别是对照的1.97、1.65和1.63倍;轻度、强度间伐林分胸径呈单峰右偏山状分布,大径阶树木占绝对优势,而中度间伐、对照林分胸径呈单峰左偏山状分布。综合分析不同林龄阶段不同强度抚育间伐措施对林分生长状况的影响,可以得出蒙古栎天然次生林高效经营技术为幼龄阶段时采用轻度、中度、强度间伐均可,在中龄林时宜采用强度间伐(保留密度1600株/hm2)。  相似文献   
187.
不同植被类型植物物种多样性   总被引:9,自引:1,他引:8  
为了评价大面积人工种植杜仲对当地植物多样性的影响,以河南省汝阳县不同植被类型为研究对象,通过群落学调查,运用重要值、Shannon-Wiener物种多样性指数(H)、Simpson物种多样性指数(D)和均匀度指数(JH')等指标,统计分析杜仲人工林、温带落叶阔叶林(以下简称次生林)和撂荒地3种不同植被类型的植物物种多样性,探讨杜仲种植对植物多样性的影响。调查发现,杜仲林样地中出现植物82种,隶属39科63属,草本层为最发达的一层;次生林样地中出现植物70种,隶属32科62属,乔木层为最发达层;撂荒地样地中出现植物84种,隶属35科69属,无乔木层。杜仲林物种丰富度和多度均不亚于次生林和撂荒地,且杜仲林草本层物种丰富度和植株总数均高于次生林。统计分析显示,杜仲林乔木层、灌木层和草本层多样性指数H和D值、均匀度指数JH'值与其它两种植被类型相比无显著性差异(P0.05)。因此,种植杜仲过程中采用合理密度,适当管理,不仅能提供叶、花、果等资源,而且能够丰富草本植物的种类和数量,增加植物物种多样性。  相似文献   
188.
中亚热带4种森林凋落物量、组成、动态及其周转期   总被引:7,自引:0,他引:7  
郭婧  喻林华  方晰  项文化  邓湘雯  路翔 《生态学报》2015,35(14):4668-4677
为研究亚热带次生林保护对森林生态系统养分循环等功能过程的影响。采用凋落物直接收集法,比较湘中丘陵区3种次生林(马尾松+石栎针阔混交林、南酸枣落叶阔叶林、石栎+青冈常绿阔叶林)和杉木人工林的凋落物量、组成特征及其周转期。结果表明:4种林分年凋落物量在414.4—818.2 g m-2a-1之间,3种次生林显著高于杉木人工林,3种次生林两两之间差异不显著,落叶对林分凋落物量的贡献最大,占林分凋落物量的59.9%—66.6%。杉木人工林和南酸枣落叶阔叶林的凋落物量月动态变化呈"双峰型",马尾松+石栎针阔混交林、石栎+青冈常绿阔叶林呈"不规则型"。优势树种的凋落物量对其林分凋落物量的贡献随林分树种多样性的增加而下降,杉木、马尾松凋落物量的月动态与其林分凋落物量的月动态基本呈一致变化趋势,但南酸枣、青冈、石栎没有一致的变化趋势。杉木人工林凋落物分解率最低(0.31),周转期最长(3.2 a),南酸枣落叶阔叶林分解率最高(0.45),周转期最低(2.2 a),凋落物的分解速率和周转随林分树种多样性增加而加快。可见,次生林凋落物量大,且分解快,周转期短,有利于养分归还和具有良好地力维持的能力。  相似文献   
189.
亚高山森林自然与人工恢复对土壤涵水能力的影响   总被引:2,自引:0,他引:2  
西南亚高山原始针叶林被大规模采伐后,在皆伐迹地上营造了大量云杉林进行人工恢复。但关于这些人工林的土壤涵水能力如何,一直没有系统深入的研究与评价。选择川西米亚罗林区系列不同林龄云杉人工林(20 a、30 a、40 a、70 a)为对象,以相邻同龄自然更新恢复的针阔混交林为对照,比较人工林土壤涵水能力随着演替进程的动态及其与自然恢复次生林之间的差异,结合人工与自然恢复后的林地特征(如细根生物量、凋落物储量和土壤有机碳等)和土壤物理结构参数等差异,阐释自然与人工恢复后土壤涵水能力差异的影响因素。结果显示:随着人工林演替,土壤0—40 cm层最大持水量随林龄的增加而降低,但变化不显著,从20年的2200 t/hm~2下降到70年的2138 t/hm~2,年平均下降速率为1.24 t/hm~2;然而在自然次生林中,土壤最大持水量随着林龄的增加呈现出波动式变化,从20年的2142 t/hm~2增加到40年的2565 t/hm~2,到70年又下降为2302 t/hm~2。通过土壤持水特性与林地凋落物贮量、细根生物量和土壤物理结构参数的相关分析表明,由不同恢复途径导致的林地土壤有机碳含量、凋落物特性及细根差异,进而改变土壤物理结构是影响土壤持水性能差异的主要因素。这些结果说明,从土壤持水量角度考虑,在对采伐迹地进行造林恢复时,应尽量避免营造结构单一、高密度的人工纯林,应选择营造针阔混交林的模式进行恢复。  相似文献   
190.
肖玲  王开运    张远彬 《生态学报》2006,26(6):1701-1708
应用自控、封闭、独立的生长室系统,研究升高的大气CO浓度(环境CO浓度+350(±25)μmol•mol-1,EC)和温度(环境温度+2.0(±0.5)℃,ET)及其交互作用(ECT)对不同栽植密度条件下红桦根际土壤可培养微生物数量的影响。结果表明:(1)EC显著增加了高密度条件下根际细菌数量;在整个生长季中,最大的根际细菌数量增加出现在7月份;而EC对低密度处理的根际细菌数量影响不显著。除了5月和6月份,ET在其余月份均显著增加了根际细菌数量,但是与密度处理没有有意义的相关;ECT对高低密度处理的根际细菌数量均未产生有统计意义的影响。(2)EC对低密度条件下的根际放线菌数量有显著增加,而对高密度条件下的根际放线菌数量无显著影响;ET和ECT对高低密度条件下的根际放线菌数量均未产生有统计意义的影响。(3)EC和ET对高低密度条件下的根际真菌数量无显著增加,而ECT显著增加了根际真菌数量。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号