首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   910篇
  免费   100篇
  国内免费   580篇
  1590篇
  2024年   21篇
  2023年   65篇
  2022年   70篇
  2021年   61篇
  2020年   62篇
  2019年   47篇
  2018年   38篇
  2017年   48篇
  2016年   47篇
  2015年   52篇
  2014年   81篇
  2013年   41篇
  2012年   82篇
  2011年   51篇
  2010年   65篇
  2009年   75篇
  2008年   75篇
  2007年   51篇
  2006年   43篇
  2005年   70篇
  2004年   32篇
  2003年   50篇
  2002年   55篇
  2001年   41篇
  2000年   17篇
  1999年   27篇
  1998年   19篇
  1997年   25篇
  1996年   33篇
  1995年   22篇
  1994年   26篇
  1993年   18篇
  1992年   13篇
  1991年   19篇
  1990年   10篇
  1989年   12篇
  1988年   8篇
  1987年   8篇
  1986年   1篇
  1985年   6篇
  1984年   1篇
  1950年   2篇
排序方式: 共有1590条查询结果,搜索用时 15 毫秒
91.
新型冠状病毒肺炎是由新型冠状病毒(severe acute respiratory syndrome-coronavirus 2, SARS-CoV-2)感染导致的急性呼吸道传染性疾病。自2019年爆发以来,SARS-CoV-2在世界范围内引起大流行,严重威胁人类的生命安全。目前,已有的疫苗尚不能提供完全的机体免疫保护。因此,开发广谱有效的抗病毒抑制剂是当下热门的研究方向。SARS-CoV-2属于RNA病毒,其RNA依赖性的RNA聚合酶(RNA dependent RNA polymerase, RdRp)在不同RNA病毒中具有高度保守性,是抗病毒抑制剂研发的重要靶标。RdRp是RNA病毒复制的核心组成部分,具有典型的右手杯状结构特征。本文重点介绍近年爆发并持续流行的新型冠状病毒RdRp的结构特征,以及靶向抑制剂的研发进展。同时,选取了其它几种有代表性的致病RNA病毒:流感病毒、轮状病毒、人类鼻病毒、丙型肝炎病毒和寨卡病毒,介绍了它们RdRp的结构特征及其靶向抑制剂的开发。本研究比较了抑制剂靶点结构的异同及抑制效果差异,并分析了可能导致该差异的原因。最后,本文总结讨论了目前针对RdRp...  相似文献   
92.
脲酶抑制剂和硝化抑制剂可以通过调控尿素氮转化的全过程延长氮肥肥效,提高氮肥利用效率,但目前所用脲酶抑制剂和硝化抑制剂多为化学合成材料,成本高,且其抑制效果受土壤性质、气候条件和作物体系等多方面因素的影响。本研究采用田间小区试验,以冬小麦-夏玉米轮作种植体系为研究对象,设置不施氮肥(CK)、单施尿素(N)、尿素+双氰胺(ND)、尿素+腐植酸(NH)、尿素+沸石(NP)、尿素+N-丁基硫代磷酰三胺+双氰胺(NUD)、尿素+腐植酸+双氰胺(NHD)、尿素+沸石+双氰胺(NPD)8个处理,探讨在等施氮量条件下腐植酸或沸石两种天然增效剂及其与化学硝化抑制剂双氰胺(DCD)复配对小麦和玉米轮作体系周年产量、氮素利用效率、土壤硝态氮累积及土壤-植物系统氮平衡的影响。结果表明:与NH或NP处理相比,腐植酸和沸石分别与DCD复配(NHD和NPD)后,玉米季产量(11268和11397 kg·hm-2)及周年总产量(20494和20582 kg·hm-2)均显著提高,且达到了与化学脲酶抑制剂和硝化抑制剂复配处理(NUD)基本相当的产量水平;与N处理相比,NHD和...  相似文献   
93.
水体氮素污染日益严重,如何经济、高效地去除水体氮素已成为研究热点。近年来,研究人员已从不同环境中分离到许多同时具有异养硝化和好氧反硝化功能的菌株,此类菌生长迅速,可在好氧条件下同时实现硝化和反硝化的过程,并可用于脱除有机污染物,是一类应用潜力巨大的脱氮菌。目前,异养硝化-好氧反硝化菌的脱氮途径和机制主要是通过测定氮循环中间产物或终产物、测定相关酶活性、注释部分氮循环相关基因及参考自养硝化菌和缺氧反硝化菌的氮循环途径等进行研究,其完整的氮素转化途径和氮代谢机制还需要进一步明确。总结了目前异养硝化-好养反硝化菌的脱氮相关酶系及其编码基因的研究进展,以期为异养硝化-好氧反硝化菌的理论研究及其在污水脱氮处理上的应用提供参考。  相似文献   
94.
【背景】深海海域具有高压、低温、无光等环境条件,蕴含着丰富而独特的微生物资源。【目的】从深海沉积物中定向分离、筛选脱氮效率高的好氧脱氮菌株资源,并揭示其脱氮特性,为开发水体脱氮微生物技术提供物质基础。【方法】以东太平洋、南大西洋、西南印度洋共10个站位的深海沉积物为研究材料,在28°C下使用无机氮源连续进行两轮富集培养,然后定性筛选可以脱除氨氮、亚硝态氮和硝态氮的菌株,并通过形态学和16S rRNA基因序列分析进行初步分类鉴定;对优选得到的功能菌株,分别采用以氨氮、亚硝态氮、硝态氮为唯一氮源的培养基定量研究其生长和脱氮性能。【结果】从10份大洋深海沉积物样品中共分离得到49株好氧反硝化菌,其中3株在有氧条件下反硝化效率较高,分别命名为Pseudomonassp.G111、Pseudomonassp.G112和Dietziamaris W023a,其中菌株G111和G112与模式菌株博岑假单胞菌Pseudomonas bauzanensis BZ93T的16S rRNA基因序列相似度为99.2%,菌株W023a与模式菌株海洋迪茨氏菌DietziamarisATCC35013T的16SrRNA基因序列相似度为99.9%。菌株G111、G112和W023a培养48h后,对氨氮的脱除率分别为98.0%、85.2%和97.6%;对亚硝态氮的脱除率分别为71.9%、67.5%和34.7%;对硝态氮的脱除率分别为66.0%、52.6%和56.3%。菌株G111、G112和W023a均为异养硝化-好氧反硝化菌,可通过好氧反硝化作用将亚硝态氮和硝态氮还原为含氮气体,也可通过异养硝化-好氧反硝化作用将氨氮转化为含氮气体。【结论】从深海沉积物中分离筛选得到3株高效好氧反硝化菌,所获得的菌株在水体净化、污水处理、生态系统修复等领域具有应用潜力。  相似文献   
95.
热休克蛋白90(Hsp90)通过对几百种蛋白质底物(客户蛋白质)进行合理的折叠、成熟其构象并且激活,在肿瘤细胞的生长和繁殖中发挥重要作用.因此,Hsp90成为非常有吸引力、有前途的抗肿瘤药物靶点,并且超过20种抑制剂已经进入临床实验阶段.我们在这里设计并合成了一个小分子抑制剂:FS36.收集了Hsp90N-FS36复合物晶体结构的X射线衍射实验数据.高分辨率X射线晶体结构表明,FS36在ATP结合位点上与Hsp90N相互作用,并且FS36可能替代核苷酸与Hsp90N结合.FS36和Hsp90N的复合物晶体结构和相互作用为后期设计和优化新型抗肿瘤药物奠定基础.  相似文献   
96.
好氧反硝化微生物学机理与应用研究进展   总被引:3,自引:0,他引:3  
郭焱  张召基  陈少华 《微生物学通报》2016,43(11):2480-2487
近年来,关于好氧反硝化过程的研究主要集中在三个方面:分别是好氧反硝化菌株的分离和脱氮性能表征,好氧反硝化微生物的应用潜力分析,以及好氧反硝化过程的机理研究。好氧反硝化菌株分布范围广泛,可从多种环境中分离得到,种属以Pseudomonas sp.、Alcaligenes sp.和Paracoccus sp.为主。好氧反硝化菌株及菌群在实验室条件下表现出优良的耐冷、耐盐特性,并具有可降解毒性有机物及N_2O减排的潜力。关于好氧反硝化过程的机理研究表明,虽然硝酸盐作为电子受体的竞争力比氧气弱,但反硝化作为辅助电子传递途径,可提高产能效率,防止NAD(P)H的过量积累。因此,硝酸盐可与氧气同时参与微生物的新陈代谢,即发生好氧反硝化现象。未来除了继续分离更新更好的好氧反硝化菌株外,应加强对好氧反硝化机理及实际生物强化方面的研究。  相似文献   
97.
过氧亚硝酸根与细胞信号转导   总被引:1,自引:0,他引:1  
生物系统中产生的过氧亚硝酸根(peroxynitrite,ONOO-)具有强氧化性,能够损伤多种生物大分子,产生细胞毒性。细胞通过激活信号通路产生应激反应,其中包括蛋白质酪氨酸激酶(PTK)依赖的多种路径,而ONOO-通过硝化或氧化作用调节酪氨酸的磷酸化。酪氨酸残基的硝化能直接影响酪氨酸的磷酸化,而磷酸酶的氧化将导致酪氨酸磷酸化/去磷酸化平衡的改变,ONOO-激活细胞信号转导通路的作用机制对认识其生理病理功能具有重要意义。  相似文献   
98.
唐克  郭颖 《病毒学报》2017,33(5):798-807
尼帕病毒(Nipah virus)属副粘病毒科亨尼帕病毒属,是在南亚各国出现的一种人畜共患病高致死率病毒。自1999年以来至少造成387人死亡,属生物安全4级病原(BSL-4),迄今为止尚无针对该病毒的疫苗或药物批准上市。近年来,以尼帕病毒进入宿主细胞为靶点的结合抑制剂和融合抑制剂是抗该病毒研究的重点,本文对此领域进行综述。  相似文献   
99.
100.
蛋白酶3(proteinase 3,PR3)是中性粒细胞分泌的主要丝氨酸蛋白酶之一,其生物学功能广泛,不仅能降解多种组织蛋白,还可通过加工细胞因子、受体等调控炎症反应,与慢性炎症性疾病如血管炎性肉芽肿病、慢性阻塞性肺疾病、肺囊肿性纤维症的发生发展密切相关,可能作为疾病防治靶点.本文主要综述了PR3的生物学功能及其在疾病中的可能作用机制,期望为相关疾病的防治提供新的思路.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号