首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   5篇
  国内免费   34篇
  119篇
  2023年   2篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   2篇
  2012年   10篇
  2011年   2篇
  2010年   8篇
  2009年   4篇
  2008年   7篇
  2007年   2篇
  2006年   3篇
  2005年   5篇
  2004年   8篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   6篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
11.
纯化的高梁叶片磷酸烯醇式丙酮酸羧化酶(PEP羧化酶)经不同浓度的盐酸胍处理变性失活后,在试验的蛋白浓度范围内,它的失活时间进程的动力学分析表明为一级反应。0.4 M盐酸胍处理25分钟后(O℃),酶的催化活性完全丧失,酶蛋白的远紫外圆二色性光谱、内源荧光光谱及免疫特异性等测定均表明酶的结构发生了深刻变化。甘油及PEP羧化酶的变构效应剂G6P和甘氨酸对酶在盐酸胍溶液中的变性作用有一定的保护效果。变性酶用复性缓冲液稀释20倍后,在最佳条件下,再经30分钟保温,酶的催化活性能恢复70%以上。G6P和甘氨酸能促进变性酶的复性,甘油亦有明显效果。随着酶活性的恢复,它的远紫外圆二色性、内源荧光及免疫特异性也随之恢复,变性酶的复性速率在常温下(25℃)比在低温下(0℃)要快得多。  相似文献   
12.
【目的】通过增加北京棒杆菌(Corynebacterium pekinense)PD-67芳香族氨基酸合成的前体物质磷酸烯醇式丙酮酸(PEP)的供应,解除终产物对芳香族氨基酸合成途径中第一个酶同时也是关键酶3-脱氧-D-阿拉伯庚酮糖-7-磷酸合酶(DS)的反馈抑制并提高抗反馈抑制的DS的活力,使碳流更多地流向芳香族氨基酸合成途径,从而积累更多L-色氨酸。【方法】运用PCR技术扩增北京棒杆菌PD-67磷酸烯醇式丙酮酸合酶基因pps,与表达载体连接构建重组质粒pXPS;运用重叠PCR技术定点突变大肠杆菌(Escherichia coli)受苯丙氨酸调控的DS基因aroG,使相应的编码氨基酸序列发生突变:Leu175Asp,新的基因命名为aroGfbr,与表达载体连接构建重组质粒pXA;构建pps和aroGfbr的共表达重组质粒pXAPS。将3个重组质粒分别转入菌株PD-67,构建工程菌株PD-67/pXPS、PD-67/pXA和PD-67/pXAPS。通过摇瓶发酵研究工程菌株的发酵特性。【结果】酶活分析结果表明,pps基因和aroGfbr基因在北京棒杆菌PD-67中均实现了表达。工程菌株PD-67/pXA粗酶液DS抗反馈抑制分析表明,AroGfbr已解除酪氨酸和苯丙氨酸的反馈抑制。过表达pps基因和aroGfbr基因分别使工程菌L-色氨酸产量提高12.1%和26.8%,双基因共表达可使工程菌的产酸量提高35.9%。【结论】北京棒杆菌PD-67pps基因的过表达以及大肠杆菌来源的解除反馈抑制的aroGfbr的过表达均有助于增加PD-67 L-色氨酸的合成,而双基因的共表达可以进一步提高L-色氨酸的积累量。  相似文献   
13.
用转PEPC基因水稻(Oryza sativa L. subsp.japonica Kitaake)和原种水稻Kitaake为材料,研究了不同基因型水稻叶片中的C4光合微循环及其功能.通过测定与光合C4途径有关的关键酶,如磷酸烯醇式丙酮酸羧化酶(PEPC)、NADP -苹果酸酶(NADP -ME)、NADP -苹果酸脱氢酶(NADP -MDH)和丙酮酸磷酸双激酶(PPDK),说明原种水稻叶片中具有完整的C4光合酶体系;用外源OAA或MA饲喂叶切片或叶绿体后明显增加光合速率,证明原种水稻中具有一个有限的光合C4微循环.将玉米的PEPC基因导入原种水稻后,可大幅度提高光合C4微循环的速率.测定不同基因型的CO2交换速率,看出水稻中C4光合微循环的增强有提高净光合速率(Pn)和降低光呼吸速率/净光合速率(Pr/Pn)比值的作用.叶绿素荧光特性分析表明,C4光合微循环的增强伴随着PSⅡ电子传递效率(Fv/Fm)和光化学猝灭(qP)的增加以及非光化学猝灭(qN)的降低;这些结果为通过基因工程手段提高作物光合效率的遗传育种提供了科学根据.  相似文献   
14.
&#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2015,39(4):645-652
实验通过评价斜带石斑鱼幼鱼生长性能、血清指标和相关酶活性的变化, 探讨斜带石斑鱼获得最大生长的饲料蛋氨酸(Met)水平与Met代谢关键酶活性和氧化损伤的关系。添加DL-Met使实验饲料中Met的含量分别为0.71%、0.98%、1.26%、1.57%、1.86%和2.18%(Diet1-Diet6), 配制6组等氮等脂的饲料。选择健康实验鱼初重(9.750.05) g随机分为6组, 每天分别于8: 00和17: 00投喂实验饲料, 养殖8周。结果表明, Diet3组鱼体增重率和特定生长率显著高于Diet1和Diet6组(P0.05); Diet4斜带石斑鱼幼鱼的肥满度显著高于Diet1、Diet5和Diet6 (P0.05); Diet2和Diet3组血清总蛋白含量显著高于Diet5组(P0.05), Diet3组幼鱼血糖含量显著低于Diet1组和Diet2组(P0.05), 血清总胆固醇含量在Diet3组逐渐降低, Diet46组显著低于Diet2组(P0.05); Diet3组肝脏超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性最高, 显著高于其他各组(P0.05), Diet 4组肝脏磷酸烯醇式丙酮酸羧激酶(PEPCK)活性与Diet 3相比差异不显著, 但是显著低于其余各组(P0.05)。综合以上结果, 以特定生长率为判据, 经二次曲线模型拟合可得斜带石斑鱼幼鱼若获得最大特定生长率, 其饲料中Met的最适含量为1.42%(占饲料蛋白3.16%)。在该水平下, 鱼体血糖、血清总胆固醇含量和PEPCK活性较低, 有利于改善鱼体对能量的利用; SOD和CAT活性升高有利于改善鱼体的氧化损伤。    相似文献   
15.
【目的】分析丙型肝炎病毒(HCV)核心蛋白(CORE)稳定表达对磷酸烯醇式丙酮酸羧基酶(PCK1)转录水平的影响,并分析HCV CORE调控PCK1转录的分子机制,为进一步阐明HCV感染致2型糖尿病机理的探讨提供新的思路。【方法】利用反转录病毒表达系统构建稳定表达HCV CORE的Huh7-lunet-core细胞系。采用Real-time PCR和萤光素酶报告基因技术检测Huh7-lunet-core细胞系中PCK1、FOXO1以及PGC-1α转录水平变化,并结合Western blot分析FOXO1的活性变化。【结果】HCV CORE的稳定表达显著增强PCK1的转录水平,HCV CORE不影响FOXO1的转录和表达水平,但降低FOXO1的磷酸化水平,激活了FOXO1的转录活性,并增强PGC-1α的mRNA表达水平。【结论】HCV CORE在Huh7-lunet细胞中的稳定表达激活FOXO1的转录活性,并与PGC-1α协同作用,上调PCK1的转录,从而导致肝糖异生过度发生,对HCV CORE调控PCK1转录的分子机制的揭示可能为HCV感染相关的糖尿病的治疗提供新的靶点。  相似文献   
16.
10-8mol/L的DON毒素加入小麦根质膜制剂中可促进K+刺激的ATP酶活力,10-6mol/L开始呈抑制效应,抑制程度随DON浓度加大而提高。根尖(5cm)离体根段于0.5mmol/L的KCl中,10-8mol/L的DON能促进根段K+吸收,10-6mol/L以上浓度则K+吸收呈抑制,10-2mol/L浓度下根段的净吸收为负值,表明组织中K+大量外渗。根段置蒸馏水中6h,4mmol/L的DON即导致振段K+渗漏。用DON处理整株小麦根,浓度在0.25mmol/L以上可促进K+从植株其它部位向根运输,而浓度在8mmol/L时即抑制K+向根富集,且根内K+明显渗漏。  相似文献   
17.
Spraying a 1-2 mmol/L solution of NaHSO3 on the leaves of wild-type rice (Oryza sativa L.)Kitaake (WT), phosphoenolpyruvate carboxylase (PEPC) transgenic (PC) rice and PEPC phosphate dikinase(PPDK) transgenic rice (PC PK), in which the germplasm was transformed with wild-type Kitaake as the gene receptor, resulted in an enhancement of the net photosynthetic rate by 23.0%, 28.8%, and 34.4%,respectively, for more than 3 d. It was also observed that NaHSO3 application caused an increase in the ATP content in leaves. Spraying PMS (a cofactor catalysing the photophosphorylation cycle) and NaHSO3 separately or together on leaves resulted in an increase in photosynthesis with all treatments. There was no additional effect on photosynthetic rate when the mixture was applied, suggesting that the mechanism by which NaHSO3 promotes photosynthesis is similar to the mechanism by which PMS acts and that both of compounds enhanced the supply of ATE After spraying a solution of NaHSO3 on leaves, compared with the WT Kitaake rice, a greater enhancement of net photosynthetic rate was observed in PEPC transgenic(PC) and PEPC PPDK transgenic (PC PK) rice, with the greatest increase being observed in the latter group. Therefore ATP supply may become the limiting factor that concentrates CO2 in rice leaves transformed with an exogenous PEPC gene and exogenous PEPC PPDK genes.  相似文献   
18.
以琥珀酸放线杆菌Actinobacillus succinogenes F3—21为出发菌株,分别用吖啶黄、紫外线、紫外线.硫酸二乙酯和亚硝基胍进行诱变,产生突变菌库。用“96孔板培养-HPLC浓缩检测-厌氧瓶复筛”的模式筛选高产突变株。从1056株突变株中,筛选到一株高产菌株Ⅵ-10-C。连续传代10次,产酸水平不变。在5L发酵罐中补料分批发酵72h,Ⅵ-10-C产琥珀酸87.6g/L,生产强度1.22g/(L·h),糖酸转化率0.66g/g;琥珀酸产量比出发菌提高了30%。代谢通量与关键酶活性分析表明:相比于F3-21,Ⅵ-10-C发酵过程中从磷酸烯醇式丙酮酸节点处流向草酰乙酸的代谢流量增加了28.9%,相对应的磷酸烯醇式丙酮酸羧化激酶(PEPCK)酶活提高了23.5%。结果表明用“96孔板培养-HPLC浓缩检测-厌氧瓶复筛”的模式能快速有效筛选高产琥珀酸菌株。  相似文献   
19.
20.
研究探讨了脱氧雪腐镰刀菌烯醇(DON)对人外周血单个核细胞HLA-I(human leucocyte cyte antigen I)分子表达影响.采用流式细胞术(FCM)和免疫印迹方法研究了不同剂量DON对体外培养人外周血单个核细胞表面HLA-I分子表达的影响及其量效关系.FCM定量检测结果表明,不同浓度DON处理均可一定程度降低人外周血单个核细胞表面HLA-I分子的表达,DON 50ng/mL、100ng/mL、1000 ng/mL和2000 ng/mL组HLA-I类分子的平均表达量分别为6.92±0.68、6.64±0.69、5.95±0.48和5.48±0.77,在50~2000ng/mL范围内随着DON浓度增加,外周血单个核细胞HLA-I分子表达降低,两者呈显著负相关(r=0.737,P<0.01).Western印迹结果显示,大剂量DON(1000ng/mL和2000ng/mL)组人外周血单个核细胞HLA-I分子表达明显减弱.研究结果表明脱氧雪腐镰刀菌烯醇可剂量依赖地抑制体外培养的人外周血单个核细胞HLA-I分子的表达.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号