首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9278篇
  免费   934篇
  国内免费   4010篇
  2024年   210篇
  2023年   535篇
  2022年   647篇
  2021年   653篇
  2020年   558篇
  2019年   515篇
  2018年   497篇
  2017年   467篇
  2016年   469篇
  2015年   484篇
  2014年   671篇
  2013年   514篇
  2012年   654篇
  2011年   610篇
  2010年   540篇
  2009年   611篇
  2008年   639篇
  2007年   439篇
  2006年   424篇
  2005年   393篇
  2004年   380篇
  2003年   355篇
  2002年   295篇
  2001年   246篇
  2000年   247篇
  1999年   211篇
  1998年   145篇
  1997年   127篇
  1996年   161篇
  1995年   176篇
  1994年   267篇
  1993年   137篇
  1992年   148篇
  1991年   124篇
  1990年   138篇
  1989年   119篇
  1988年   89篇
  1987年   65篇
  1986年   59篇
  1985年   76篇
  1984年   42篇
  1983年   39篇
  1982年   21篇
  1981年   6篇
  1980年   1篇
  1963年   1篇
  1958年   1篇
  1954年   1篇
  1950年   15篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
891.
赵吕权  朱道弘  曾杨 《昆虫学报》2012,55(9):1037-1045
丽斗蟋Velarifictorus ornatus具有明显的翅二型现象, 长翅型与短翅型雌虫的卵巢和飞行肌存在着生理权衡。本研究分别应用蒽酮比色法、 硫代磷酸香草醛法、 考马斯亮蓝染液对羽化后10 d内两型雌虫飞行肌与卵巢内糖原、 总脂及蛋白质含量进行了定量分析。结果表明: 成虫羽化后10 d内, 两型雌虫体重无明显差异(P>0.05), 但短翅型雌虫怀卵量明显多于长翅型雌虫, 而人工脱翅能够促进长翅型雌虫怀卵量增加(P<0.05)。短翅型雌虫飞行肌内蛋白质、 糖原及总脂含量在成虫羽化后10 d内无明显变化, 但长翅型雌虫飞行肌内蛋白质在成虫羽化后3 d时达到最大值564.4±87.5 μg/♀, 糖原与总脂含量分别于羽化后第5天达到最大值85.2±21.7 μg/♀和5 284.7±1 267.4 μg/♀。然后开始下降, 各实验处理天数内, 长翅型雌虫飞行肌内蛋白质、 糖原及总脂含量都显著多于短翅型雌虫(P<0.05)。相反, 各处理天数内, 短翅型雌虫卵巢内蛋白质、 糖原及总脂含量则明显多于长翅型雌虫(P<0.05), 同时虫龄对蛋白质、 糖原及总脂在两型雌虫飞行肌与卵巢内分配也产生明显影响(P<0.05)。人工脱翅能够促进长翅型雌虫卵巢内蛋白质、 糖原及总脂含量增加, 同时诱导飞行肌内蛋白质、 糖原及总脂含量降低, 其中总脂含量在脱翅后10 d时降为2 394.9±1 461.8 μg/♀, 只有最大值的一半, 而与短翅型雌虫相似(P>0.05), 表明总脂为丽斗蟋飞行的主要能源物质。外用保幼激素Ⅲ能够促进长翅型雌虫卵巢内蛋白质、 糖原及总脂含量增加(P<0.05), 但对飞行肌内三者含量无明显影响(P>0.05), 外用早熟素Ⅰ对短翅型雌虫卵巢内蛋白质、 糖原及总脂含量亦无明显影响(P>0.05)。上述结果表明, 丽斗蟋长翅型雌虫首先将获得的资源用于发育飞行所需的飞行肌, 短翅型雌虫则首先将所获得的资源用于发育繁殖所需的卵巢, 但长翅型雌虫飞行肌与卵巢间的资源分配方式受保幼激素的影响。  相似文献   
892.
百部内生放线菌的分离、分类及次级代谢潜力   总被引:1,自引:0,他引:1  
【目的】以对叶百部块根为材料分离内生放线菌,并对分离菌株进行分类、抗菌活性和次级代谢产物合成基因研究。【方法】样品经过严格的表面消毒,选用4种培养基分离百部内生放线菌;分离菌株通过形态观察和16S rRNA序列分析进行分类鉴定;采用琼脂移块法测试分离菌株的抗菌活性;通过PCR检测分离菌株的PKS/NPRS和卤化酶基因;使用HPLC-UV/VIS-ESI-MS/MS分析发酵产物。【结果】从6个样品中获得18株内生放线菌,分属链霉菌属(Streptomyces)、小单孢菌属(Micromonospora)、假诺卡氏菌属(Pseudonocardia)和甲基杆菌属(Methylobacterium)。分离菌株绝大部分具有抗菌活性和次级代谢产物合成基因,其中13株对耐药金黄色葡萄球菌和/或绿脓杆菌有拮抗活性,17株具有PKS/NRPS基因,8株菌具有卤化酶基因,且卤化酶阳性代表菌株的发酵产物具有抗细菌活性和卤代化合物特征。【结论】百部作为一种传统中药,其内生放线菌以链霉菌和小单孢菌为主,在次级代谢产物合成方面具有很好的潜力,可作为一类重要微生物资源进行活性产物开发。  相似文献   
893.
金丽  周华  赵沙沙  杨伟  牛司强  汪德强 《微生物学报》2012,52(11):1415-1420
[目的]核黄素( vitamin B12,riboflavin)是辅因子黄素腺嘌呤二核苷酸(flavin adenine dinucleotide,FAD)和黄素单核苷酸(flavin mononucleotide,FMN)的前体物,对生物体的生物合成至关重要.如果细菌不能够从外界摄取足够的黄素( flavin)就需要自身合成核黄素以维持菌体的生存与增殖.3,4-二羟基-2-丁酮-4-磷酸合成酶(3,4-Dihydroxy-2-butanone-4-phosphate synthase,DHBPs)为核黄素生物合成途径中关键酶之一.在镁离子存在的情况下,DHBPs将5-磷酸核酮糖(ribulose-5 -phosphate,Ru5P)转换成3,4-二羟基-2-丁酮4-磷酸(3,4-dihydroxy-2-Bu-tanone-4-Pho-sphate,DHBP)和甲酸盐(formate),生成的DHBP为核黄素合成的必需原料之一.人类没有合成核黄素的相关途径,因此细菌参与合成核黄素的DHBPs等相关酶就有望成为抗菌药物作用的靶位点.本课题通过对肺炎链球菌的DHBPs进行克隆表达纯化与酶学性质鉴定,为开展其三维结构的解析和抗菌药物设计提供重要的工作基础.[方法]利用PCR技术扩增DHBPs基因,构建重组表达载体pW28-DHBPs.将其转入大肠杆菌(Escherichia coli)BL21( DE3)中表达,用Ni离子亲和层析及离子交换(DEAE)纯化获得有活性的DHBPs后,进行酶学性质鉴定.[结果]酶切和测序证实成功构建了质粒pW28-DHBPs,在E.coli BL21中表达了可溶性DHBPs,纯化后获得了纯度为95%的靶蛋白质,经分子筛分析DHBPs在溶液中以二聚体形式存在.对DHBPs进行酶学性质分析表明,在25℃、pH为7.5和Mg2+存在的情况下,DHBPs具有将5-磷酸核酮糖转换成DHBP和甲酸盐的活性.[结论]第一次成功克隆并在E.coli BL21中表达了一种肺炎链球菌合成核黄素的相关酶—DHBPs,纯化后的重组DHBPs具有较好的5-磷酸核酮糖分解活性,这为解析其三维结构和基于结构进行的新一代抗菌药物设计提供重要的工作基础.  相似文献   
894.
895.
Laminin-511是层黏连蛋白(laminin)家族中高度保守的一员,在早期胚胎及成体多种组织的基底膜中广泛分布。Laminin-511通过其肽链的相应区域与细胞受体及基底膜成分连接,参与维持基底膜的完整性和调节细胞的多种生物学功能。该文在概述laminin-511的结构特点、作用机制的基础上,对其在胚胎发育、干细胞研究中的功能作一综述。  相似文献   
896.
鲫( Carassius auratus)是洞庭湖水系一种重要的经济鱼类.为了解洞庭湖水系野鲫的细胞遗传背景,采用PHA和秋水仙素活体注射法,对沅水和澧水采集的野鲫样本逐一进行肾细胞染色体制片及组型分析.结果发现,在两条河流的野鲫群体中均检测出染色体数为100和基本染色体数为150的两种不同倍性个体,其中,两条河流染色体数为100的二倍体鲫组型公式为2N=28M+ 22SM+ 28ST +22T,NF=150;基本染色体数为150的三倍体鲫组型公式为3N =42M +33SM +42ST +33T,NF=225.在沅水和澧水不同采样点随机采集的共100尾野鲫中,检测出的三倍体比例(85%)远高于二倍体(15%),且二倍体与三倍体鲫个体在形态特征上不存在明显差异(P>0.05).两种不同倍性鲫在同一水体的共存对于鲫的遗传进化与选育具有一定的理论和实践意义,而二倍体鲫种群的大量减少,则提示我们应该从染色体组遗传多样性角度加强对洞庭湖水系二倍体野鲫资源的保护.  相似文献   
897.
哺乳动物Hippo信号通路:肿瘤治疗的新标靶   总被引:1,自引:0,他引:1  
Xu CM  Wan FS 《遗传》2012,34(3):269-280
Hippo信号通路是首次在果蝇中发现具有调节细胞增殖与凋亡作用的信号通路。最近发现果蝇Hippo信号通路的组成、分子作用机制和生物学功能在进化过程中高度保守。Hippo信号通路在胚胎发育中对细胞的生长分化、组织器官形成以及成体干细胞的维持和自稳态的保持等方面具有重要作用。同时,Hippo信号通路与Wnt信号通路、Notch信号通路等相互作用、密切联系,在肿瘤的发生、发展过程中也起到关键作用。文章综述了哺乳动物Hippo信号通路的作用机理、与其他信号通路和蛋白质因子的相互联系及与肿瘤的关系,对于肿瘤的诊断、预防和治疗具有一定的参考价值。  相似文献   
898.
Liu Q  Li H  Chen HH  Wang J 《遗传》2012,34(5):573-583
为了观察热量限制对主动脉内皮细胞中HNF3γ及NOX4基因表达的影响, 揭示HNF3γ-NOX4-活性氧通路介导热量限制抗内皮细胞衰老的分子机制, 文章将主动脉内皮细胞分为5组:对照组、高热量组、低热量组、siRNA+低热量组、siRNA+高热量组。应用逆转录实时定量PCR(Real-time quantitative PCR, RT-qPCR)、Western blotting分析各组HNF3γ、NOX4 mRNA及蛋白水平变化, 并检测各组细胞内活性氧产量及细胞衰老程度变化。采用染色质免疫共沉淀分析HNF3γ蛋白与NOX4基因启动子区域结合情况, 萤光素酶报告基因检测HNF3γ蛋白结合后对NOX4基因启动子活性的影响。结果显示:与对照组比较, 低热量组HNF3γ mRNA和总HNF3γ蛋白表达水平、磷酸化/总HNF3γ比值显著升高(P<0.05), NOX4 mRNA和蛋白表达水平、细胞内活性氧产量及细胞衰老程度显著降低(P<0.05); 高热量组HNF3γ mRNA和总HNF3γ蛋白表达水平、磷酸化/总HNF3γ比值显著降低(P<0.05), NOX4 mRNA和蛋白表达水平、细胞内活性氧产量及细胞衰老程度显著升高(P<0.05); siRNA+低热量组及siRNA+高热量组中NOX4 mRNA和蛋白表达水平、细胞内活性氧水平及细胞衰老程度显著升高(P< 0.05)。染色质免疫共沉淀证实HNF3γ蛋白可与NOX4基因启动区域4个结合位点(-6 bp、-76 bp、-249 bp、-954 bp)结合。萤光素酶报告基因检测显示HNF3γ蛋白与NOX4启动子区域1个位点(-6 bp)、2个位点(-6、-76 bp)、3个位点(-6、-76、-249 bp)、4个位点(-6、-76、-249、-954 bp)结合, 可使NOX4启动子活性分别降低至对照组的80.15±4.64%、40.02.±2.15%、16.46±2.24%、12.13±1.46%, P<0.05。上述结果提示热量限制可上调HNF3γ基因表达, 增强HNF3γ蛋白活性, 促进HNF3γ蛋白同NOX4基因启动子区域结合, 抑制NOX4基因表达, 进而减少细胞内活性氧产生而延缓动脉内皮细胞衰老。  相似文献   
899.
Wei KF  Chen J  Chen YF  Wu LJ  Jia WS 《遗传》2012,34(3):296-306
从逆境信号感知、ABA合成的触发到ABA水平的动态调控,是细胞内重要的逆境信号传导途径,相对于应答ABA的下游信号事件,该领域研究滞后。研究显示,根系中ZEP、限速酶NCED、AtRGS1等合成酶基因及ABA2基因响应胁迫反应上调ABA信号水平。而7′-,8′-,9′-hydroxylase和糖基转移酶基因受逆境诱导激活,负调节ABA的积累。同时,提高的内源ABA信号水平能激活合成酶基因和代谢酶基因的表达。此外,基因表达和源库动力学分析显示,叶片ABA动态库的维持依赖根源ABA的持续供应。值得一提的是,miRNA与ABA信号起源及动态水平维持有关。进一步的代谢动力学分析揭示,ABA信号水平受合成酶基因和代谢酶基因表达的协同控制,多因素共同参与内源ABA信号水平的动态调控。  相似文献   
900.
凯里生物群既是中国华南寒武系重要的布尔吉斯页岩型生物群之一,同时也是国内外已知少数微体布尔吉斯页岩型特异埋藏化石库之一,化石以二维的有机质壁形式保存。本文改进孢粉学处理方法,对来自中国贵州寒武系凯里组苗板坡、丹寨、竹坪和屯州等几个剖面以及相邻地层的共22个样品进行酸泡处理,获得微体化石新材料。结果显示,苗板坡剖面保存的化石多样性明显较高,其中发现的疑源类和丝状藻类最多,占统计总数(N=1549)的90%以上;同时还发现少量的后生动物残片,如威瓦西虫的骨板、腕足动物壳体残块以及蠕形动物表皮等,这些后生动物化石残片为研究某些后生动物的细微结构提供了重要补充信息,有助于对这些动物化石进行分类鉴定,并可能具有一定生物地层学意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号