首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   12篇
  国内免费   57篇
  132篇
  2024年   1篇
  2022年   4篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   8篇
  2013年   1篇
  2012年   6篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   9篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   7篇
  2003年   8篇
  2002年   5篇
  2001年   7篇
  2000年   10篇
  1999年   4篇
  1998年   1篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有132条查询结果,搜索用时 0 毫秒
61.
研究片段化森林中土壤呼吸速率的格局对进一步揭示陆地生态系统碳循环具有重要意义。本研究以千岛湖人工陆桥岛屿系统不同生境(岛屿与大陆,岛屿边缘与岛屿内部)为对象,分析了土壤呼吸速率的季节动态变化规律及其与土壤理化因子的关系。结果表明: 1)土壤呼吸速率在不同季节差异显著。夏季(3.74 μmol·m-2·s-1)>秋季(2.30 μmol·m-2·s-1)>春季(1.82 μmol·m-2·s-1)>冬季(1.40 μmol·m-2·s-1)。2)森林片段化对土壤呼吸速率产生显著影响,岛屿土壤呼吸速率(2.37 μmol·m-2·s-1)显著高于大陆(2.08 μmol·m-2·s-1);岛屿边缘土壤呼吸速率(2.46 μmol·m-2·s-1)显著高于岛屿内部(2.03 μmol·m-2·s-1)。3)土壤温度显著促进了土壤呼吸速率,并作为主要因子解释了56.1%的变化。4)土壤呼吸速率与土壤全碳、铵态氮含量和地表植被覆盖率呈显著正相关。土壤全碳和铵态氮含量在岛屿边缘显著高于岛屿内部。综上,森林片段化促进了土壤呼吸速率,而土壤理化因子的变化是其主要原因。  相似文献   
62.
63.
苦瓜采后某些生理生化变化与其衰败的关系   总被引:1,自引:0,他引:1  
对采后常温贮藏的蓝山大白苦瓜的呼吸速率、乙烯释放速率及SOD、POD、CAT活性和AsA、GSH的含量进行了测定。结果表明,适期采收的食用苦瓜呼吸速率呈下降趋势,第8天叶绿素消失、瓜皮转黄前后转为上升,一直延续至苦瓜衰败,其呼吸类型属晚峰型;苦瓜采后乙烯释放呈上升趋势,初期乙烯释放微弱,增加缓慢,从第6天开始急剧增加。乙烯释放速率上升早于呼吸上升,二者在采收6d后迅速同步上升。苦瓜采后1~4d,保护酶系统的SOD、POD、CAT活性出现适应性上升,非保护酶系统的AsA、GSH含量也上升;在4~8d,除POD活性迅速下降后又急剧上升及AsA含量在6d后下降外,SOD、CAT活性和GSH含量均稳中有降,保持相对稳定;在叶绿素消失、瓜皮转黄的第8天后,AsA、GSH含量急剧减少,而SOD、POD、CAT活性急剧增强,视为衰老迅速恶化的结果。  相似文献   
64.
CEPA处理对苦瓜采后呼吸、乙烯释放及保护系统的影响   总被引:2,自引:2,他引:0  
CEPA处理适期采收的食用苦瓜后,使其呼吸速率,乙烯释放速率明显增加,呼吸上升、瓜皮转黄期由采后第8天提前至第6天,且使贮期缩短4d。CEPA处理不同程度地抑制了苦瓜采后前期的各种保护酶活性,且使衰老后期的保护酶活性上升期提前。CEPA处理后前6d,AsA、GSH含量均呈上升趋势;6d后迅速下降,且下降速率大于CK。CEPA处理未改变苦瓜采后MDA含量总体下降的趋势。  相似文献   
65.
在常温下用不同浓度的外源H2O2(0~20 mmol·L-1)预处理水稻幼苗,再进行12 h 6℃低温胁迫,根据幼苗相对含水量和质膜相对透性筛选最佳外源H2O2处理浓度,并分析最佳外源H2O2浓度下幼苗的渗透调节物质和活性氧相关指标的变化.结果表明:(1)0~8 mmol·L-1 H2O2预处理可以增加水稻幼苗的相对含水量,降低其质膜相对透性,并以4 mmol·L-1 H2O2的效果最佳.(2)低温胁迫后,与对照组相比,4 mmol·L-1外源H2O2预处理降低了水稻幼苗萎蔫程度,并使其总呼吸速率、交替途径容量都有增加,同时还抑制了丙二醛的含量,增加了可溶性糖、可溶性蛋白质和脯氨酸的含量.(3)外源H2O2预处理对水稻幼苗的内源H2O2含量以及O(-)/(·)2产生速率没有显著影响.研究发现,外源H2O2可以通过提高呼吸速率、降低脂质过氧化程度、增加碳氮代谢来有效增强水稻幼苗的抗寒性,它可能以一种独立于内源活性氧系统之外的方式发挥作用.  相似文献   
66.
为探讨不同土地利用方式对新疆昭苏天山北坡山地草甸土壤呼吸速率的影响, 于2015年和2016年的4月底至9月初, 用土壤呼吸测量仪对补播草地(RG)、豆禾混播草地(LG)、围封草地(NG)和农田(CR)的土壤呼吸进行测定, 并分析了影响土壤呼吸速率的土壤生物和水热因子。结果表明: 1)土壤呼吸速率在2015年NG和CR呈现双峰值, RG和LG呈现单峰曲线, 各处理均在8月达到最大值。2016年各处理峰值出现的时间不同, RG和LG在6月底达到最大值, NG和CR在7月底达到最大值; 监测期内平均土壤呼吸速率由大到小依次为: NG > RG > CR > LG。2)各样地土壤呼吸速率与土壤温度呈指数正相关关系; 土壤含水量与土壤呼吸的关系可能由于此地段常年湿润, 土壤含水量较高, 从而抑制土壤呼吸, 土壤呼吸与土壤体积含水量呈线性负相关关系; 土壤呼吸的温度敏感指数(Q10)大小为NG > CR > RG > LG。3)不同处理的土壤微生物以细菌为主, 放线菌次之, 真菌居第三, 各样地总微生物生物量为: NG > RG > CR > LG, 与各样地平均土壤呼吸速率大小一致, 拟合分析显示RG土壤呼吸与放线菌呈显著的线性相关关系, LG土壤呼吸与细菌和放线菌呈显著线性相关关系。不同处理微生物生物量碳平均含量为CR > NG > LG > RG, 拟合分析显示RG与CR的土壤呼吸速率与微生物生物量碳呈显著线性相关关系, 其中CR的土壤呼吸速率与微生物生物量碳极显著相关; 4)各样地酶活性与土壤呼吸的相关关系分析显示, 只有蛋白酶和蔗糖酶与土壤呼吸有相关关系, 而蔗糖酶对土壤呼吸的影响更大。豆禾混播草地和补播草地相对于围封草地和农田, 土壤呼吸速率显著降低, 草地土壤的固碳能力显著提高。  相似文献   
67.
用从野生建兰根部分离的菌根真菌P15菌株感染墨兰Cymbidium sinense和建兰Cymbidiumensiolium的根状茎后,使寄主的呼吸速率、细胞色素C氧化酶、过氧化物酶活性明显增高,而感染前后IAA氧化酶活性变化不明显.两个品种相比较,建兰根状茎的呼吸速率、细胞色素C氧化酶和过氧化物酶活性均比墨兰的高,但墨兰的根状茎IAA氧化酶活性则高于建兰.  相似文献   
68.
土壤呼吸是气候变化背景下森林生态系统稳定性的重要评价指标。本研究以五台山臭冷杉森林群落为对象,对不同海拔(2100、2200、2300 m)典型群落土壤理化性质及主要生长季土壤呼吸速率、土壤水热条件变化进行分析,并建立回归模型解析土壤温度、湿度与土壤呼吸速率变化的关系。结果表明:臭冷杉森林土壤为中性偏酸性,随海拔上升,土壤p H、有机碳、总氮、总磷、速效磷含量和土壤湿度增加,土壤温度和土壤呼吸速率降低; 7—10月,臭冷杉森林土壤温度和土壤呼吸速率逐渐降低,降幅分别为49.0%和64.9%,土壤湿度增加11.7%;土壤温度平均解释土壤呼吸速率变化的76.9%(P<0.001),且随海拔升高相关系数(R`2)减小、温度敏感性增加(Q10),土壤湿度平均解释土壤呼吸速率变化的25.8%(P<0.001),二者共同解释土壤呼吸速率变化的71.2%(P<0.001)。本实验中,季节和海拔造成的土壤温度改变是影响土壤呼吸的主要因素,土壤湿度对土壤呼吸的影响较小。此外,土壤养分与土壤呼吸速率的RDA分析结果表明,土壤有机碳、总氮、总磷和速效磷含量是影响土壤呼...  相似文献   
69.
比较了KCN 预处理与未处理黄皮种子在脱水后活力的变化,表明KCN 预处理可有效降低黄皮种子脱水敏感性。电解质渗漏率分析表明,KCN 预处理在一定程度上推迟了黄皮种子胚轴在脱水过程中的膜损伤。此外,KCN 预处理显著抑制了黄皮胚轴在脱水初期的呼吸速率,在脱水过程中也维持在较低水平,但复水后该抑制很快消失, 在脱水6 d 后的复水吸胀过程中呼吸速率恢复较对照为快,并维持在较高水平。呼吸途径分析表明,黄皮胚轴及其线粒体的呼吸以细胞色素途径为主。还分析了脱水对黄皮胚轴线粒体蛋白质及其氧化磷酸化水平的影响。  相似文献   
70.
枇杷果实采后在高O2(O2>90%)环境中冷藏时,果实呼吸速率和多酚氧化酶活性受到明显抑制,可溶性固形物和可滴定酸含量下降较慢。贮藏35d后的果实仍甜酸适宜,风味较好,果心褐变程度较轻。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号